差动式厚度测量装置制造方法及图纸

技术编号:15721538 阅读:294 留言:0更新日期:2017-06-29 02:27
本发明专利技术公开了一种差动式厚度测量装置。本发明专利技术引入了OptoNCDT激光位移传感器作为测量机构,实现非接触式测量物体的厚度,避免了接触式测量效率低、误差大、易损伤等缺陷,避免了其他非接触式测量自身应用的局限性或对环境、人身、被测对象造成的危害;采用步进电机→齿轮减速机构→差动微位移传动机构→测量机构作为装置的整体结构。充分利用步进电机的优势,避免积累误差的出现,并通过齿轮减速将高转速转化为大转矩,使得测量机构的运动更加稳定、易控制;差动微位移机构具有微调、增力、均衡、补偿的优点,可提高测量精度。本发明专利技术实现了对被测对象的非接触式高精度测量。

Differential thickness measuring device

The invention discloses a differential thickness measuring device. The invention introduces OptoNCDT laser displacement sensor as the measuring mechanism, realize non-contact thickness measurement, avoid contact measuring efficiency is low, large error, easy to damage and other defects, avoid other non-contact measurement of the application of their own limitations or cause to the environment, the person and the object to be measured by the hazards; stepping motor, gear reducer, differential transmission mechanism, the overall structure of the device as a measuring mechanism. Make full use of the advantages of stepper motor, to avoid the accumulation of errors, and the gear will be converted to high speed and high torque, the measurement of the movement of the mechanism is more stable and easy to control; the advantages of differential mechanism with fine tuning and boosting balanced compensation, can improve the measuring precision. The invention realizes non-contact high-precision measurement of the object to be measured.

【技术实现步骤摘要】
差动式厚度测量装置
本专利技术属于机电一体化
,涉及一种差动式厚度测量装置,可应用于非接触式高精度测量实例中。
技术介绍
厚度测量是工业生产过程的关键环节,对测厚装置进行研究与设计具有重要意义。在工程实践或其它工业生产过程中,有时需高精度地测量物体的厚度,例如轧制高精度钢材和铝材的测量,拼装粉末袋厚度的测量以及缜密仪器的测量等。厚度测量技术可分为接触式测量和非接触式测量两种。接触式测量,由于测厚装置要与被测对象直接接触,所以其具有测量精度低、测量点少、效率低、易损伤等缺点,已不能适应当前工业生产的要求。目前,非接触测量技术主要有x射线测量、放射线测量、放射性测量、超声波测量、激光测量等。x射线测量和放射线测量因为吸收和散效应使射线在透射方向上的强度衰减,通过的板带越厚,射线的强度衰减就越大。放射性测量和超声波测量,虽然其测量性能和技术相对先进,但是会对环境和人身造成很大的伤害,超声波还可能会对测量对象的结构和性能造成破坏。激光测厚利用光三角测量原理进行厚度的测量,既具有非接触式测量精确性和实时性的优势,又避免了接触式测量和其它非接触式测量的缺陷,是一种首选的测厚方式。激光三角法测厚是激光测厚的其中一种,人们一直想丰富并完善激光三角法在测厚领域的应用,差动式厚度测量装置不仅利用激光三角法测厚原理实现非接触式测厚,并且其差动式测量结构会进一步提高测量的精确性和灵活性。
技术实现思路
本专利技术的目的是采用激光三角法测厚原理,设计一种差动式厚度测量装置。实现非接触式测量,避免接触式测量效率低、误差大、易损伤等缺陷。并利用差动式测量结构抵消一部分由被测对象的振动和弯曲引入的误差,从而提高测量精度。本专利技术包括驱动部分、齿轮减速对、差动微位移传动机构和测量机构。具体包括:传感器、安装板、滑板、镶条、底托板、导轨、螺母台板、差动螺杆、齿轮减速对、联轴器、电机、安装架、托架、支撑板、防逆转机构、重力平衡机构。驱动部分选用的是步进电机驱动。步进电机通过电机安装架和托架固定连接在导轨上。并通过联轴器联结齿轮减速器和差动微位移机构,从而将电机轴的旋转运动转化为测量机构的直线运动。传动机构采用差动微位移机构。该机构通过螺杆实现差动传动的功能,螺杆的大导程端与支撑板上的螺母旋合,小导程端与螺母台板旋合,两端螺旋旋向相反。螺母台板相对于螺杆大导程端做前旋运动,相对于螺杆小导程端做后旋运动,前旋与后旋的位移不相等,差值就是微位移值。测量机构采用激光位移传感器。传感器集成发射器、光学接收系统、信号发生器与信号处理器三个功能模块,实现装置的非接触式测量。传感器通过安装板固定在滑板上,滑板通过在导轨上滑动带动传感器做直线运动。通过镶条和底托板调整或约束滑板的运动。其他辅助机构有防逆转机构和重力平衡机构。防逆转机构与齿轮减速器的齿轮轴相连,当步进电机进行检修等需掉电失去自锁功能时,由防逆转机构制动锁紧;重力平衡机构与螺母台板连接,用于平衡掉一部分重力负载且可防逆转。本专利技术有益效果如下:1)、利用差动微位移机构微调、增力、均衡、补偿的优点,实现高灵敏度、高精度、准确定位的目的。2)、采用步进电机作为驱动,将连续的脉冲数目转换为离散的机械位移,避免积累误差的出现,从而精确的控制测量装置的运动距离。3)、以激光三角法测量原理为基础,采用激光位移传感器作为测量机构,实现非接触式测量,提高了测量的效率和精确度,避免了对测量仪器以及测量对象的损伤。附图说明图1为本专利技术测量装置装配关系左视图。图2为本专利技术测量装置装配关系主视图。图3为本专利技术防逆转机构结构图。图中,1、传感器,2、安装板,3、滑板,4、镶条,5、底托板,6、导轨,7、螺母台板,8、定位螺栓,9、差动螺杆,10、齿轮减速对,11、联轴器,12、电机,13、安装架,14、托架,15、支撑板,16、防逆转机构,16-1、螺母,16-2、制动外锥盘,16-3、衔铁、16-4、螺钉,16-5、制动支撑板,16-6、螺旋线圈,16-7、弹簧,16-8、制动器滑杆,16-9、螺母,16-10、内锥盘,17、重力平衡机构。具体实施方式下面结合附图对本专利技术进一步描述。如图1、2、3所示,本实施例包括传感器1、安装板2、滑板3、镶条4、底托板5、导轨6、螺母台板7、定位螺栓8、差动螺杆9、齿轮减速对10、联轴器11、电机12、安装架13、托架14、支撑板15、防逆转机构16、螺母16-1、制动外锥盘16-2、衔铁16-3、螺钉16-4、制动支撑板16-5、螺旋线圈16-6、弹簧16-7、制动器滑杆16-8、螺母16-9、内锥盘16-10、重力平衡机构17。本实施例的驱动部分选用的是步进电机驱动。步进电机12通过电机安装架13固定安装在托架14上,托架14通过螺栓固定在导轨6上。通过的联轴器11连接电机旋转轴与齿轮减速对10。电机12输出的旋转运动经过齿轮减速对10以及螺杆9转化成滑板3的直线运动。步进电机12为两相步进电机,步距角为1.8°。本实施例的传动机构采用差动微位移机构。该机构通过差动螺杆9实现其功能,差动螺杆9的大导程端与支撑板15上的螺母旋合,小导程端与螺母台板7旋合。螺母台板7的运动距离即为差动传动的微位移值,螺母台板7通过与滑板3固定连接带动测量机构运动。差动螺杆9为单线程梯形螺纹,牙形角α=30°,前端螺纹与后端螺纹旋向相反。螺杆9前端螺纹的结构尺寸参数为:导程P2=1.5mm,公称直径d=10mm,中径d2=9.250mm,大径d1=10.300mm,小径d3=8.200mm(外螺纹),8.500mm(内螺纹);螺杆9后端螺纹的结构尺寸参数为:导程P2=2.0mm,公称直径d=12mm,中径d2=11.000mm,大径d1=12.500mm,小径d3=9.500mm(外螺纹),10.000mm(内螺纹)。本实施例的测量机构采用的是OptoNCDT激光位移传感器。传感器1被固定在安装板2上,安装板2又被固联在滑板3上,滑板3可在导轨6上滑动,从而带动传感器1做直线运动。调整镶条4用于调整滑板与导轨接触的松紧程度。底托板用于5约束滑板3沿导轨6做直线运动。本实施例的辅助机构有防逆转机构和重力平衡机构。由图2、3知,防逆转机构16与齿轮减速对10的齿轮轴相连。防逆转机构16工作原理是通过控制螺旋线圈16-6的通断电来控制制动外锥盘16-2和内锥盘16-10的分合。由于楔形增压,圆锥形摩擦盘可以使制动锥盘分开,此时锥顶角半角α>arctanu。摩擦副材料为金属-金属时,α≥6~7°;皮革-金属时,α≥12°。本机构制动外锥盘16-2材料为50Mn,制动内锥盘16-10材料为45高频淬火钢,因此选取α=15°。重力平衡机构17与螺母台板7连接,用于平衡重力负载。为简化装置结构,重力平衡机构17的结构比较简单,其主要构件是弹簧,由设计估计知,装置滑动部分的总质量M约等于3kg,G=Mg=30N。由于滑动部分在运动,所以为了让弹簧弹力变化范围变小,尽量减小弹簧的弹性系数k。这里,取k=1N/m;弹簧压缩量Δl=G/2k=15mm;则弹簧原长l=43mm;材料为碳素弹簧钢C级制造。本专利技术使用工作过程如下:1)、驱动状态当测厚装置通电之后,步进电机12旋转轴带动齿轮减速器10的齿轮轴做旋转运本文档来自技高网...
差动式厚度测量装置

【技术保护点】
差动式厚度测量装置,包括驱动部分、齿轮减速对、差动微位移机构和测量机构;驱动部分中的步进电机(12)通过电机安装架(13)和托架(14)固定在导轨(6)上;通过联轴器(11)连接电机旋转轴与齿轮减速对(10),将电机(12)输出的旋转运动经过齿轮减速对(10)以及差动螺杆(9)转化成滑板(3)的直线运动;测量机构中的激光位移传感器(1)通过安装板(2)固联在滑板(3)上,滑板(3)可在导轨(6)上滑动,从而带动激光位移传感器(1)做直线运动,其特征在于:差动微位移机构中的差动螺杆(9)的大导程端与支撑板(15)上的螺母旋合,小导程端与螺母台板(7)旋合,两端螺旋旋向相反;螺母台板相对于螺杆大导程端做前旋运动,相对于螺杆小导程端做后旋运动,前旋与后旋的位移不相等,螺母台板(7)的运动距离即为差动传动的微位移值,螺母台板(7)通过与滑板(3)固定连接带动测量机构运动。

【技术特征摘要】
1.差动式厚度测量装置,包括驱动部分、齿轮减速对、差动微位移机构和测量机构;驱动部分中的步进电机(12)通过电机安装架(13)和托架(14)固定在导轨(6)上;通过联轴器(11)连接电机旋转轴与齿轮减速对(10),将电机(12)输出的旋转运动经过齿轮减速对(10)以及差动螺杆(9)转化成滑板(3)的直线运动;测量机构中的激光位移传感器(1)通过安装板(2)固联在滑板(3)上,滑板(3)可在导轨(6)上滑动,从而带动激光位移传感器(1)做直线运动,其特征在于:差动微位移机构中的差动螺杆(9)的大导程端与支撑板(15)上的螺母旋合,小导程端与螺母台板(7)旋合,两端螺旋旋向相反;螺母台板相对于螺杆大导程端做前旋运动,相对于螺杆小导程端做后旋运动,前旋与后旋的位移不相等,螺母台板(7)的运动距离即为差动传动的微位移值,螺母台板(7)通过与滑板(3)固定连接带动测量机构运动...

【专利技术属性】
技术研发人员:苏少辉刘桂英朱佳栋陆璐孟圣然
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1