当前位置: 首页 > 专利查询>天津大学专利>正文

耦合温度场的高拱坝施工进度实时仿真方法技术

技术编号:15650119 阅读:118 留言:0更新日期:2017-06-17 03:03
本发明专利技术公开了耦合温度场的高拱坝施工进度实时仿真方法,将数据挖掘方法引入高拱坝施工期坝体混凝土温度场实时分析研究中,建立施工期温度场回归预测模型,求解施工期坝体混凝土温度场;以现场采集的坝体混凝土温度信息和施工进度信息为基础,分析高拱坝施工期坝体混凝土浇筑温度概率分布;采用支持向量机方法,建立施工期温度场回归预测模型,计算高拱坝施工期坝体混凝土温度场;基于耦合温度场的高拱坝施工进度实时仿真数学模型,将温度场实时分析结果与施工进度实时仿真系统耦合,进行施工进度实时仿真分析,得到施工方案。

【技术实现步骤摘要】
耦合温度场的高拱坝施工进度实时仿真方法
本专利技术属于高拱坝施工进度仿真领域,具体的说,是涉及耦合温度场的高拱坝施工进度实时仿真方法;涉及高拱坝施工期施工进度信息和混凝土温度信息采集、施工期温度场分析以及耦合温度场的施工进度实时仿真方法。
技术介绍
由于拱坝具有抗超载性能强,抗震性能好,节省施工材料等优点,因此拱坝是高坝建设中选用最多的坝型之一。高拱坝通常位于地质条件复杂、地形陡峻的高山峡谷地区,由于高拱坝结构复杂,地应力高,施工时间跨度大,混凝土浇筑方量大,且空间资源有限,因此高拱坝的施工进度和施工质量直接影响整个工程的安全与效益。由于坝体混凝土体积大,导热系数低以及水化热存在,导致早期混凝土的内外温度存在差异,当温度差异达到一定程度时,就会产生温度诱发裂缝,从而影响混凝土结构的完整性、渗透性和抗压强度,对高拱坝混凝土施工质量产生直接影响。为了防止温度诱发裂缝形成,保证高拱坝混凝土施工质量,当坝体温度场不满足设计要求时,需要采取相应温控措施或调整施工方案对混凝土温度进行控制,从而直接影响高拱坝施工进度;同时,在进行接缝灌浆前,横缝各温控分区温度场及横缝开度必须满足相应的技术要求。因此,在进行高拱坝施工进度仿真分析过程中,必须综合考虑坝体混凝土温度场的影响,同时还需考虑其他约束条件及随机因素影响,如自然环境、结构形式、浇筑机械、供料能力等。目前针对高拱坝施工进度仿真研究中,主要有:吴康新(2008)研究了高拱坝施工全过程动态仿真建模的理论与方法,将面向对象仿真技术、虚拟现实技术、多Agent技术和实时控制理论方法在高拱坝施工仿真中进行综合应用,开展了复杂约束条件下的混凝土高拱坝施工动态仿真与实时控制研究。钟登华(2010)等人通过对高拱坝施工系统进行分解-协调耦联分析,综合考虑各种复杂的施工约束条件,提出基于动态仿真的高拱坝施工进度实时控制方法。任炳昱(2010)等人提出基于施工动态信息监控方法的高拱坝施工实时控制理论与方法,并对高拱坝混凝土跳仓浇筑施工动态仿真进行了研究,研制开发了施工进度实时控制分析软件。宋凤莲(2012)等人系统分析施工机械系统中混凝土生产、运输和浇筑的运行特性,构建混凝土施工机械的有限源多级服务系统和施工作业过程中机械设备运行的统计参数方法,提出基于机械设备效率的施工进度方案优选与系统模拟方法。刘超(2012)在研究拱坝混凝土施工和缆机浇筑行为的基础上,考虑缆机运行中平面与垂直干扰等施工约束,采用排队论和负均衡技术,建立以缆机为基本决策单元、料罐为基本计算单元的缆机施工仿真模型。王仁超(2005)等人针对高拱坝的工程特点,基于C++高级程序设计语言开发了高拱坝浇筑施工仿真及可视化系统,考虑了缆机之间运行的空间冲突问题和缆机生产效率的利用问题。钟登华(2008)等人将智能化仿真与混凝土坝施工仿真相结合,采用多策略建模方法构建不同智能层次的Agent模型,建立混凝土坝施工仿真系统Agent分类的整体模型结构。基于多Agent的混凝土坝施工仿真系统的开发,增强了施工仿真的可信度和适用范围。尹习双(2014)等人将施工仿真技术与数字大坝综合信息平台结合,实现对施工进度的动态跟踪分析,并与施工期应力和温控动态研究紧密结合,为质量和进度的动态协调提供有效的手段。吴斌平(2010)考虑温度控制与施工进度控制的相互影响,建立大坝浇筑单元温度控制和施工进度的综合量化模型,为施工决策人员直观的展现出温控与进度之间的复杂关系。目前针对高拱坝施工期温度场计算研究中,主要有:张锐(2005)等人采用有限元方法计算分析拱坝施工期非稳定温度场,考虑了拱坝混凝土施工浇筑、养护、环境气候变化、人工降温保温措施以及接缝灌浆和混凝土材料热力学性质随时间变化。纪新帅(2012)基于ANSYS平台计算碾压混凝土拱坝施工期温度场变化,模拟从大坝开始浇筑到蓄水运行的整个过程。JaafarMS(2007)等人采用三维有限元方法计算混凝土坝施工期温度场,研究施工期仓面浇筑顺序对坝体温度场的影响,并提出调整仓面浇筑顺序措施以降低坝体混凝土最高温度。目前高拱坝施工进度仿真研究中,对于施工期温度场,通常都是根据混凝土理论温度曲线,将坝体混凝土温度变化过程转化为混凝土龄期进行分析。然而,大体积混凝土温度场是一个复杂的非线性函数,其空间分布和时间演变受到多因素的影响,如混凝土材料属性,周围环境条件,浇筑温度,水化热,浇筑块厚度,仓面浇筑顺序,以及分期通水冷却和表面保温等温控措施,因此坝体混凝土温度场难以完全符合理论温度曲线。在施工期坝体混凝土温度场研究中,目前国内外大多数采用有限元方法计算施工期坝体混凝土温度场的空间分布和时间演变。然而,采用有限元方法进行坝体混凝土温度场分析时,往往需要耗费大量的时间和精力,不能满足高拱坝施工进度实时仿真分析的需要。综上所述,目前针对高拱坝施工进度实时仿真研究中主要存在以下缺陷:(1)高拱坝施工期坝体混凝土温度场是一个复杂的非线性函数,坝体混凝土温度场难以完全按照理论温度曲线变化。因此,在高拱坝施工进度仿真中,根据混凝土理论温度曲线,将坝体混凝土温度场变化过程转化为混凝土龄期进行分析,得到的施工进度仿真分析结果与现场实际情况出现偏差。(2)尽管有限元分析方法是施工期坝体混凝土温度场研究的有效方法,但是采用有限元方法计算高拱坝施工期坝体混凝土温度场时,需要耗费大量的时间,无法满足高拱坝施工进度实时仿真分析的需求。因此,在当前高拱坝施工进度实时控制过程中,如何采取科学高效的方法研究施工期坝体混凝土温度场的空间分布和时间演变规律,分析施工期混凝土温度场对高拱坝施工进度的影响,为现场施工提供指导,是高拱坝施工进度实时仿真研究的重要内容。参考文献:[1]吴康新.混凝土高拱坝施工动态仿真与实时控制研究[D].天津大学,2008.[2]钟登华,任炳昱,李明超,等.高拱坝施工质量与进度实时控制理论及应用[J].中国科学:技术科学,2010(12):1389‐1397.[3]任炳昱.高拱坝施工实时控制理论与关键技术研究[D].天津大学,2010.[4]宋凤莲,李斌.拱坝混凝土施工机械系统配置优化模型及其模拟[J].武汉大学学报(工学版),2012(03):374‐378.[5]刘超,尹习双,刘全.高拱坝混凝土浇筑行为及动态优化施工过程仿真研究[J].水电站设计,2012(04):1‐6.[6]王仁超,石英,李名川,等.混凝土高拱坝浇筑施工仿真[J].天津大学学报,2005(07):625‐629.[7]钟登华,吴康新,练继亮.基于多Agent的混凝土坝施工仿真与优化研究[J].系统仿真学报,2008(02):485‐489.[8]尹习双,刘金飞.高拱坝施工期进度仿真分析与控制决策关键技术[J].水力发电,2014(02):68‐71.[9]吴斌平.锦屏高拱坝现场施工温控与进度综合评价研究[D].天津大学,2010.[10]张锐,常晓林,解凌飞,等.混凝土拱坝施工期温度场研究[J].中国农村水利水电,2005(6):39‐42.[11]纪新帅.碾压混凝土拱坝施工期温度场应力场仿真分析[D].西北农林科技大学,2012.[12]JaafarMS,BayagoobKH,NoorzaeiJ,etal.Develop本文档来自技高网...
耦合温度场的高拱坝施工进度实时仿真方法

【技术保护点】
耦合温度场的高拱坝施工进度实时仿真方法,其特征在于,包括以下步骤:(1)建立耦合温度场的高拱坝施工进度实时仿真数学模型;(2)实时采集高拱坝施工期施工进度信息和混凝土温度信息;(3)分析施工期高拱坝坝体混凝土温度场影响因素;(4)基于数据挖掘方法建立高拱坝施工期坝体混凝土温度场回归预测模型;(5)根据步骤(2)所述施工进度信息实时更新高拱坝施工进度仿真初始条件;(6)根据步骤(4)所述混凝土温度场回归预测模型和步骤(5)实时更新的仿真初始条件,进行施工期温度场分析,并进行施工进度仿真计算,得到高拱坝施工进度方案,以指导现场施工。

【技术特征摘要】
1.耦合温度场的高拱坝施工进度实时仿真方法,其特征在于,包括以下步骤:(1)建立耦合温度场的高拱坝施工进度实时仿真数学模型;(2)实时采集高拱坝施工期施工进度信息和混凝土温度信息;(3)分析施工期高拱坝坝体混凝土温度场影响因素;(4)基于数据挖掘方法建立高拱坝施工期坝体混凝土温度场回归预测模型;(5)根据步骤(2)所述施工进度信息实时更新高拱坝施工进度仿真初始条件;(6)根据步骤(4)所述混凝土温度场回归预测模型和步骤(5)实时更新的仿真初始条件,进行施工期温度场分析,并进行施工进度仿真计算,得到高拱坝施工进度方案,以指导现场施工。2.根据权利要求1所述耦合温度场的高拱坝施工进度实时仿真方法,其特征在于,步骤(1)所述耦合温度场的高拱坝施工进度实时仿真数学模型如下:仿真初始条件:式中,i为坝段编号,I为坝段总数,H(i,0)为第i坝段在0时刻浇筑高程,Hr(i)为第i坝段实时浇筑高程,l为灌缝编号,G(l,0)为第l灌缝在0时刻接缝灌浆高程,Gr(l)为第l灌缝实时接缝灌浆高程;状态转移方程:H(i,t)=H(i,t-1)+ΔH(i,t),t=t0,t0+1,...,TG(l,t)=G(l,t-1)+ΔG(l,t),t=t0,t0+1,...,TT(i,j,t)=T(i,j,t-1)+ΔT(i,j,t),j=1,2,...,J,t=t0,t0+1,...,T式中H(i,t)为第i坝段在t时刻的浇筑高程,ΔH(i,t)为第i坝段在t-1时刻与t时刻之间浇筑高程差,G(l,t)为第l灌缝在t时刻的接缝灌浆高程,ΔG(l,t)为第l灌缝在t-1时刻与t时刻之间接缝灌浆高程差,T(i,j,t)为第i坝段、第j浇筑块在t时刻的温度值,ΔT(i,j,t)为第i坝段、第j浇筑块在t-1时刻与t时刻之间温度变化值;仿真约束条件:其中式中,S(i,j,t)为坝块浇筑约束条件矩阵,G(l,t)为接缝灌浆约束矩阵,TFa(n)为第n分区的温度场,TCa(n)为第n分区的温度控制标准;Hmax为高拱坝最高高程,m为施工机械编号,M为施工机械总数;D(i,m,t)为坝块浇筑历时,T(i,j,t)为第i坝段、第j浇筑块在t时刻的温度值,q(n,t)为考虑随机性情况下,第n工序的历时,N为施工工序总数,p(Φ)为概率密度函数;i为坝段编号,I为坝段总数,j为某坝段的坝块编号,J为该坝段的坝块总数,T(i,j,0)为第i坝段第j坝块在0时刻的温度值,TPij为第i坝段第j坝块的浇筑温度;Tair为气温对坝体混凝土温度场的影响,g1(t)为气温变化函数,Tcool为分期通水冷却对坝体混凝土温度场的影响,g...

【专利技术属性】
技术研发人员:钟登华宋文帅任炳昱关涛储志强
申请(专利权)人:天津大学
类型:发明
国别省市:天津,12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1