光补电电解水制氢微电极光纤、光缆及制氢装置制造方法及图纸

技术编号:15596134 阅读:286 留言:0更新日期:2017-06-13 22:16
本实用新型专利技术公开了一种光补电电解水制氢微电极光纤、光缆及制氢装置,该微电极光纤包括导光内芯,导光内芯至少具有第一导光段和第二导光段;导光内芯在第一导光段由内而外依次设置有吸光层、内电极层、绝缘层、空隙层、质子交换膜和外电极层;导光内芯在第二导光段设置有与内电极层相连的导电层。该制氢光缆包括保护套管和包覆在其内呈集束状的微电极光纤。该制氢装置包括电解液槽、制氢光缆、内电极汇流件、外电极汇流件和光纤分散装置;制氢光缆的各微电极光纤分散到电解液内;各微电极光纤的外电极层、导电层分别与内电极汇流件、外电极汇流件电连接。该制氢装置利用太阳能作为电能的补充,有效降低了电能消耗,增加了氢气的空时产率。

【技术实现步骤摘要】
光补电电解水制氢微电极光纤、光缆及制氢装置
本技术涉及一种制氢装置,特别是指一种光补电电解水制氢微电极光纤、光缆及制氢装置。
技术介绍
氢气作为二次能源,必须通过一定方法才能将它制备出来。制氢方法很多,传统的制氢方法主要有化石燃料的重整、工业副产氢气和电解水制氢。电解水制氢就是利用电能来分解水,获得氢气。通过电解水方法得到氢气纯度较高,可达到99.98%,但是这个过程耗费的电量很高,目前工业上电解1Nm3氢气,约耗电量4~5度电,效率约为50%~70%。考虑到目前的供电以煤电为主,电解制氢间接产生了大量温室气体CO2和其他污染物。太阳能制氢是利用太阳能生产氢气的系统,主要有光分解制氢,太阳能发电结合电解水制氢两类。和传统的技术方法相比,这类系统有很大的潜力可以减少电解氢成本。目前全球正在开展光电化学池材料科学和系统工程的基础和应用研发计划。迄今示范型太阳能-氢气转换效率可达16%。中国专利申请,公布号CN102534645A,公开了一种光催化辅助电解水制氢的方法,以工业化的电解水制氢装置为基础,通过光催化材料对电解池阳极进行修饰,并采用光源辐照阳极,在电解水的过程中耦合光催化过程,实现光催化辅助电解水制氢。该专利技术将光催化与电解水有机地耦合在一起,产生协同效应,降低了电解池电压和制氢电耗。然而,该专利技术仅仅提出了光补电制氢的思路,对其实际应用涉及较少,并且没有提供可工业化应用的制氢装置。
技术实现思路
本技术的目的在于提供一种高效、节能的光补电电解水制氢微电极光纤、光缆及制氢装置,利用清洁太阳能补充电解水制氢的部分能量。为实现上述目的,本技术所设计的光补电电解水制氢微电极光纤,包括导光内芯,所述导光内芯至少具有由其首端向后延伸的第一导光段和位于第一导光段后面的第二导光段,所述第一导光段为周向壁面透光段,所述第二导光段为周向壁面透光段或不透光段;所述导光内芯在其第一导光段上由内而外依次设置有吸光层、内电极层、绝缘层、质子交换膜和外电极层,所述绝缘层与质子交换膜之间形成有空隙层;所述吸光层为受光能激发产生电子的光伏材料层,可将导光内芯传来的光能转换成电能;所述内电极层与质子交换膜通过穿透绝缘层与空隙层的多个微电极相连,所述多个微电极环绕内电极层均匀分布;所述外电极层为多孔导电结构;所述导光内芯在其第二导光段上设置有导电层,所述导电层与内电极层相连。该微电极光纤在具体应用时,只需将其第一导光段浸入到现有的电解液槽中,并将第二导光段、外电极层分别与外部电源的正负极相连或通过接地的方式间接相连,形成完整的电解池;同时导光内芯将光能导入,激发吸光层产生电子形成光电池,补充消耗的电能。优选地,所述导电层与内电极层由相同的导电材料一体化制作成型。所述导光内芯还具有位于第二导光段后面的第三导光段,所述第三导光段为周向壁面不透光段。优选地,所述导光内芯在其第一导光段首端的内电极层通过绝缘层包覆密封,也可以采用绝缘材料将整个端部包覆密封。若不密封可能因为漏电损失少量电能,但由于催化作用内电极层的反应主要集中在微电极上,且露出的面积很小,因此漏电损失较小,仍然能够实施。优选地,所述吸光层的厚度为50nm~20μm,所述内电极层的厚度为50nm~50μm,所述绝缘层的厚度为10nm~50μm,所述微电极的半径为100nm~20μm,所述质子交换膜的厚度为0.05~0.5mm。优选地,所述导光内芯为石英光纤、塑料光纤、晶体光纤、高分子材料光导管、玻璃光导管、玻璃光纤或透光云母光纤等具有光沿表面高通量传输特性的物质。导光内芯为细长的线形,实心、空心皆可,其横截面积可以是圆形、长方形(如光导带)等。优选地,所述微电极为Pt电极、Pd电极或含有NiS的Fe电极。微电极可以采用光刻蚀压印技术等方式穿透绝缘层并连接到内电极层上,微电极相当于内电极层的延伸,增大了内部电极的反应面积,并且起到催化作用。优选地,所述内电极层或外电极层作为阴极时其制作材料为Pt、Pd、Cu、Al、石墨烯、Ti、Tl、Cr或Au,作为阳极时其制作材料为搭载催化剂的C或Ni,所述催化剂为铁的氧化物、钴的氧化物、镍的氧化物中的一种或多种。本专利技术微电极光纤根据阴阳极的位置不同分为两种类型,一种是阴极在内(即内电极层)、阳极在外(即外电极层);另一种是阳极在内、阴极在外;连接外部电源时阴极连接负极,阳极连接正极。优选地,所述吸光层是采用二羧基联吡啶的二价钌盐有机染料,通过金属有机气相沉积或化学气相沉积,在导光内芯表面形成的吸光层,其中以化学气相沉积最优,或者是在真空条件下将所述有机染料与有机粘胶混合甩膜在导光内芯表面形成的吸光层。优选地,所述吸光层是采用无机半导体材料,通过真空喷涂、真空溅射、热蒸镀或物理气相沉积在导光内芯表面形成的吸光层;所述无机半导体材料为TiO2、ZnS、CdSe、MoS、CuInS或GaInP;优选为n型TiO2,ZnS或粒径为5~10nm的CdSe量子点,三维尺度都在纳米级(0.1~100nm)。优选地,所述绝缘层的材料为二氧化硅、氮化硅、聚酰亚胺或聚对二甲苯。优选地,所述质子交换膜为全氟磺酸隔膜(Nifion膜)、磺酸基化聚苯乙烯膜、改性全氟磺酸聚合物膜或1-丁基-3-甲基咪唑三氟甲基磺酸膜中的一种。可选地,所述电解液为水、酸性溶液、碱性溶液或含电解活化剂的水溶液,电解液的酸、碱性质要以质子交换膜可承受为准。考虑到单根微电极光纤很细,为便于使用和保护微电极光纤,本专利技术同时提供了一种光补电电解水制氢光缆,包括保护套管,所述保护套管内包覆有沿轴向相邻布置而呈集束状的多根微电极光纤,所述微电极光纤为前述光补电电解水制氢微电极光纤。优选地,在保护套管内多根所述微电极光纤紧密相邻布置,紧密相邻的好处是使整个制氢光缆剖开外层后只要最外侧的微电极光纤直接或间接的与外接电源相连,就能实现全部微电极光纤与外接电源导通,不必对每根微电极光纤分别连接电源,方便操作。基于前述微电极光纤和制氢光缆的具体应用,本专利技术还提供了一种光补电电解水制氢装置,包括电解液槽、制氢光缆、内电极汇流件、外电极汇流件和光纤分散装置;所述制氢光缆为前述光补电电解水制氢光缆,用于伸入到电解液槽中电解制氢;所述制氢光缆的保护套管在对应于其内呈集束状的微电极光纤的第一导光段首端剖开一段,从而暴露出第一导光段外表面上的外电极层;所述制氢光缆的保护套管在对应于其内呈集束状的微电极光纤的第二导光段剖开一段,从而暴露出第二导光段外表面上的导电层;所述呈集束状的微电极光纤的第一导光段通过光纤分散装置分散浸泡在电解液槽的电解液中,且各第一导光段外表面上的外电极层与外电极汇流件电连接;所述呈集束状的微电极光纤的第二导光段布置在电解液槽的外面,且各第二导光段外表面上的导电层与内电极汇流件电连接。优选地,所述制氢光缆的数量为多根,阵列分布在电解液槽的上方。优选地,所述光纤分散装置包括上下固定设置在电解液槽内的上阵列孔板和下阵列孔板,所述上阵列孔板和下阵列孔板上开设有上下对应且阵列分布的多个光纤固定孔,每根所述微电极光纤的第一导光段通过上下对应的两个光纤固定孔进行固定。优选地,所述上阵列孔板为绝缘体;所述下阵列孔板为导电体,并作为外电极汇流件,通过其上的光纤固定孔与各微电极光纤的第一导光段外表面上的本文档来自技高网...
光补电电解水制氢微电极光纤、光缆及制氢装置

【技术保护点】
一种光补电电解水制氢微电极光纤,其特征在于:包括导光内芯(2),所述导光内芯(2)至少具有由其首端向后延伸的第一导光段(A)和位于第一导光段(A)后面的第二导光段(B),所述第一导光段(A)为周向壁面透光段,所述第二导光段(B)为周向壁面透光段或不透光段;所述导光内芯(2)在其第一导光段(A)上由内而外依次设置有吸光层(3)、内电极层(4)、绝缘层(5)、质子交换膜(8)和外电极层(9),所述绝缘层(5)与质子交换膜(8)之间形成有空隙层(6);所述吸光层(3)为受光能激发产生电子的光伏材料层,可将导光内芯(2)传来的光能转换成电能;所述内电极层(4)与质子交换膜(8)通过穿透绝缘层(5)与空隙层(6)的多个微电极(7)相连,所述多个微电极(7)环绕内电极层(4)均匀分布;所述外电极层(9)为多孔导电结构;所述导光内芯(2)在其第二导光段(B)上设置有导电层(10),所述导电层(10)与内电极层(4)相连。

【技术特征摘要】
1.一种光补电电解水制氢微电极光纤,其特征在于:包括导光内芯(2),所述导光内芯(2)至少具有由其首端向后延伸的第一导光段(A)和位于第一导光段(A)后面的第二导光段(B),所述第一导光段(A)为周向壁面透光段,所述第二导光段(B)为周向壁面透光段或不透光段;所述导光内芯(2)在其第一导光段(A)上由内而外依次设置有吸光层(3)、内电极层(4)、绝缘层(5)、质子交换膜(8)和外电极层(9),所述绝缘层(5)与质子交换膜(8)之间形成有空隙层(6);所述吸光层(3)为受光能激发产生电子的光伏材料层,可将导光内芯(2)传来的光能转换成电能;所述内电极层(4)与质子交换膜(8)通过穿透绝缘层(5)与空隙层(6)的多个微电极(7)相连,所述多个微电极(7)环绕内电极层(4)均匀分布;所述外电极层(9)为多孔导电结构;所述导光内芯(2)在其第二导光段(B)上设置有导电层(10),所述导电层(10)与内电极层(4)相连。2.根据权利要求1所述的光补电电解水制氢微电极光纤,其特征在于:所述导电层(10)与内电极层(4)由相同的导电材料一体化制作成型。3.根据权利要求1所述的光补电电解水制氢微电极光纤,其特征在于:所述导光内芯(2)还具有位于第二导光段(B)后面的第三导光段(C),所述第三导光段(C)为周向壁面不透光段。4.根据权利要求1所述的光补电电解水制氢微电极光纤,其特征在于:所述导光内芯(2)在其第一导光段(A)首端的内电极层(4)通过绝缘层(5)包覆密封。5.根据权利要求1所述的光补电电解水制氢微电极光纤,其特征在于:所述吸光层(3)的厚度为50nm~20μm,所述内电极层(4)的厚度为50nm~50μm,所述绝缘层(5)的厚度为10nm~50μm,所述微电极(7)的半径为100nm~20μm,所述质子交换膜(8)的厚度为0.05~0.5mm。6.根据权利要求1~5中任一项所述的光补电电解水制氢微电极光纤,其特征在于:所述导光内芯(2)为石英光纤、塑料光纤、晶体光纤、高分子材料光导管、玻璃光导管、玻璃光纤或透光云母光纤中的一种。7.根据权利要求1~5中任一项所述的光补电电解水制氢微电极光纤,其特征在于:所述微电极(7)为Pt电极、Pd电极或含有NiS的Fe电极。8.根据权利要求1~5中任一项所述的光补电电解水制氢微电极光纤,其特征在于:所述微电极(7)采用光刻蚀压印穿透绝缘层(5)并连接到内电极层(4)上。9.一种光补...

【专利技术属性】
技术研发人员:陈义龙张岩丰陶磊明杜富滢周欢欢郑兴才
申请(专利权)人:中盈长江国际新能源投资有限公司
类型:新型
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1