无酶过氧化氢传感器及其制备方法技术

技术编号:15542508 阅读:126 留言:0更新日期:2017-06-05 11:25
本发明专利技术涉及电化学领域,具体涉及无酶过氧化氢传感器及其制备方法,包括以下步骤,①使用三电极体系,通过循环伏安法将铁氰化钐电沉积在工作电极表面,得到铁氰化钐修饰电极;②将铁氰化钐修饰电极浸泡到硝酸银溶液中,通过置换反应获得银/铁氰化钐复合纳米材料修饰电极,即无酶过氧化氢传感器。一方面,制备方法简单,第二方面,由于在检测时不需酶,无酶过氧化氢传感器稳定性好,重现性好,具有较高的专一性和抗干扰性,第三方面,能直接用于过氧化氢的快速电化学测定,在测定过氧化氢时,检测效率高,准确度高、响应时间短、检测限低、灵敏度高、线性范围宽、稳定性好、成本低。

Enzyme free hydrogen peroxide sensor and preparation method thereof

The present invention relates to an electrochemical field, in particular to non enzymatic hydrogen peroxide sensor and a preparation method thereof, comprising the following steps, the use of three electrode system, by cyclic voltammetry the samarium hexacyanoferrate electrodeposition on the surface of the working electrode, by samarium hexacyanoferrate modified electrode; the iron cyanide samarium modified electrode immersed in silver nitrate solution the silver / samarium hexacyanoferrate nanocomposites modified electrode by replacement reaction, namely non enzymatic hydrogen peroxide sensor. On the one hand, the preparation method is simple, second, because the detection without enzyme, enzyme stability without hydrogen peroxide sensor, good reproducibility, high specificity and anti-jamming, third, can be directly used for rapid electrochemical determination of hydrogen peroxide in the determination of hydrogen peroxide, high detection efficiency and high accuracy and short response time, low detection limit, high sensitivity, wide linear range, good stability and low cost.

【技术实现步骤摘要】
无酶过氧化氢传感器及其制备方法
本专利技术涉及电化学领域,特别是涉及一种无酶过氧化氢传感器及其制备方法。
技术介绍
过氧化氢具有氧化、漂白、消毒和杀菌等多种功效,可任意比例与水混溶,是一种强氧化剂,水溶液俗称双氧水,为无色透明液体。其水溶液适用于医用伤口消毒及环境消毒和食品消毒。对过氧化氢含量的快速准确检测在食品、制药、生物和环境分析中具有非常重要的意义。目前用于检测过氧化氢的方法很多,如滴定法、分光光度法以及电化学方法等。其中,电化学方法,特别是酶电化学生物传感器,由于其方法简单、灵敏度高等特点而被广泛应用于过氧化氢的测定。但由于酶容易受外界各种因素影响而失活,从而导致酶电化学生物传感器在检测过氧化氢浓度时稳定性和再生性较差,适用范围窄。
技术实现思路
为解决上述问题,本专利技术提供一种重现性好、响应时间短、检测限低、灵敏度高、线性范围宽、稳定性好、成本低的无酶过氧化氢传感器及其制备方法。本专利技术所采用的技术方案是:无酶过氧化氢传感器的制备方法,包括以下步骤,①使用三电极体系,通过循环伏安法将铁氰化钐电沉积在工作电极表面,得到铁氰化钐修饰电极;②将铁氰化钐修饰电极浸泡到硝酸银溶液中,通过置换反应获得银/铁氰化钐复合纳米材料修饰电极,即无酶过氧化氢传感器。对上述技术方案的进一步改进为,步骤①中,三电极体系为,玻碳电极为工作电极,甘汞电极为参比电极,铂电极为辅助电极,电沉积时电解质溶液的组成为0.2mol/LKCl、5mmol/LSmCl3、5mmol/L铁氰化钾。对上述技术方案的进一步改进为,步骤①中,电沉积时电位为-0.2V~0.8V,扫描速率为30mV/s~70mV/s,扫描圈数为15圈~25圈。对上述技术方案的进一步改进为,步骤②中,硝酸银溶液浓度为0.005mol/L~0.015mol/L,置换反应时间为3h~5h。无酶过氧化氢传感器,是采用权利要求1~4中任一项所述的制备方法得到的。本专利技术的有益效果为:1、采用本专利技术的制备方法得到的无酶过氧化氢传感器,一方面,制备方法简单,第二方面,由于在电化学检测时不需酶,无酶过氧化氢传感器稳定性好,重现性好,具有较高的专一性和抗干扰性,第三方面,能直接用于过氧化氢的快速电化学测定,在测定过氧化氢时,检测效率高,准确度高、响应时间短、检测限低、灵敏度高、线性范围宽、稳定性好、成本低。2、采用循环伏安法在三电极体系中,以玻碳电极为工作电极,甘汞电极为参比电极,铂电极为辅助电极,在铁氰化钐溶液(0.2mol/LKCl、5mmol/LSmCl、5mmol/L六氰合铁(Ⅲ)酸钾(铁氰化钾))下工作。工作电位范围为-0.2V~0.8V,以50mV/s的扫描速率,连续扫描20圈。铁氰化钐在玻碳电极表面形成的机理为:在-0.2V~0.8V电位范围内循环伏安法扫描的过程中,Fe(CN)63-在玻碳电极的表面被还原成Fe(CN)64-,然后与溶液中的Sm3+离子反应生成SmHCF沉积在玻碳电极表面,形成铁氰化钐修饰电极,该修饰电极化学性质稳定,专一性和抗干扰性好,且采用此工作电位和扫描速率,能加快铁氰化钐在玻碳电极表面的沉积。3、配置不同浓度的硝酸银溶液,超声10分钟后,将已经用铁氰化钐修饰过的玻碳电极,浸泡到配置好的不同浓度的硝酸银溶液中,将银置换到修饰过铁氰化钐的玻碳电极上,其中,硝酸银溶液为0.005mol/L~0.015mol/L,置换反应时间为3h~5h,采用此浓度范围的硝酸银溶液,配合此范围的反应时间,置换效果最好,所得的银/铁氰化钐复合材料SEM表征最理想,特别是选用0.01mol/L的硝酸银溶液、置换反应4h,所得的银/铁氰化钐复合材料SEM表征最理想。这主要是因为当硝酸银溶液浓度过低时,溶液中银离子浓度低,铁氰化钐修饰电极中的铁置换程度不够,当硝酸银溶液浓度过高时,溶液中银离子浓度高,铁氰化钐修饰电极中的铁置换过度,无法形成稳定的银/铁氰化钐复合材料修饰玻碳电极,造成电极表面SEM表征不理想。具体实施方式下面将结合实施例对本专利技术作进一步的说明。实施例1:无酶过氧化氢传感器的制备方法①使用三电极体系,通过循环伏安法将铁氰化钐电沉积在工作电极表面,得到铁氰化钐修饰电极;②将铁氰化钐修饰电极浸泡到硝酸银溶液中,通过置换反应获得银/铁氰化钐复合纳米材料修饰电极,即无酶过氧化氢传感器。其中,步骤①中,三电极体系为,玻碳电极为工作电极,甘汞电极为参比电极,铂电极为辅助电极,电沉积时电解质溶液的组成为0.2mol/LKCl、5mmol/LSmCl3、5mmol/L铁氰化钾,电沉积时电位为-0.2V~0.8V,扫描速率为30mV/s~70mV/s,扫描圈数为15圈~25圈。步骤②中,硝酸银溶液浓度为0.01mol/L,置换反应时间为4h。采用本专利技术的制备方法得到的无酶过氧化氢传感器,一方面,制备方法简单,第二方面,由于在检测时不需酶,无酶过氧化氢传感器稳定性好,重现性好,具有较高的专一性和抗干扰性。采用循环伏安法在三电极体系中,以玻碳电极为工作电极,甘汞电极为参比电极,铂电极为辅助电极,在铁氰化钐溶液(0.2mol/LKCl、5mmol/LSmCl、5mmol/L六氰合铁(Ⅲ)酸钾(铁氰化钾))下工作。工作电位范围为-0.2V~0.8V,以50mV/s的扫描速率,连续扫描20圈。铁氰化钐在玻碳电极表面形成的机理为:在-0.2V~0.8V电位范围内循环伏安法扫描的过程中,Fe(CN)63-在玻碳电极的表面被还原成Fe(CN)64-,然后与溶液中的Sm3+离子反应生成SmHCF沉积在玻碳电极表面,形成铁氰化钐修饰电极,该修饰电极化学性质稳定,专一性和抗干扰性好,且采用此工作电位和扫描速率,能加快铁氰化钐在玻碳电极表面的沉积。配置不同浓度的硝酸银溶液,超声10分钟后,将已经用铁氰化钐修饰过的玻碳电极,浸泡到配置好的不同浓度的硝酸银溶液中,将银置换到修饰过铁氰化钐的玻碳电极上,其中,硝酸银溶液为0.005mol/L~0.015mol/L,置换反应时间为3h~5h,采用此浓度范围的硝酸银溶液,配合此范围的反应时间,置换效果最好,所得的银/铁氰化钐复合材料SEM表征最理想,特别是选用0.01mol/L的硝酸银溶液、置换反应4h,所得的银/铁氰化钐复合材料SEM表征最理想。这主要是因为当硝酸银溶液浓度过低时,溶液中银离子浓度低,铁氰化钐修饰电极中的铁置换程度不够,当硝酸银溶液浓度过高时,溶液中银离子浓度高,铁氰化钐修饰电极中的铁置换过度,无法形成稳定的银/铁氰化钐复合材料修饰玻碳电极,造成电极表面SEM表征不理想。实施例2:无酶过氧化氢传感器本专利技术的无酶过氧化氢传感器抗干扰性能好,在相同的测试条件下,常见的干扰物质如抗坏血酸、多巴胺和尿酸等均不产生明显的电流响应。由于并没有采用常见的生物酶进行修饰,该无酶过氧化氢传感器电极具有非常好的稳定性,常温环境下存放20天后,电流响应可保持在90%以上。实施例3:无酶过氧化氢传感器检测过氧化氢浓度以PBS为检测底液,以无酶过氧化氢传感器为工作电极,采用时间-电流法对过氧化氢溶液进行检测。检测时,检测电位为-0.2V,检测底液PBS浓度为0.2M。采用本专利技术的无酶过氧化氢传感器检测过氧化氢浓度,通过银/铁氰化钐复合材料修饰玻碳电极在无酶的条件下与过本文档来自技高网...

【技术保护点】
无酶过氧化氢传感器的制备方法,其特征在于:包括以下步骤,①使用三电极体系,通过循环伏安法将铁氰化钐电沉积在工作电极表面,得到铁氰化钐修饰电极;②将铁氰化钐修饰电极浸泡到硝酸银溶液中,通过置换反应获得银/铁氰化钐复合纳米材料修饰电极,即无酶过氧化氢传感器。

【技术特征摘要】
1.无酶过氧化氢传感器的制备方法,其特征在于:包括以下步骤,①使用三电极体系,通过循环伏安法将铁氰化钐电沉积在工作电极表面,得到铁氰化钐修饰电极;②将铁氰化钐修饰电极浸泡到硝酸银溶液中,通过置换反应获得银/铁氰化钐复合纳米材料修饰电极,即无酶过氧化氢传感器。2.根据权利要求1所述的无酶过氧化氢传感器的制备方法,其特征在于:步骤①中,三电极体系为,玻碳电极为工作电极,甘汞电极为参比电极,铂电极为辅助电极,电沉积时电解质溶液的组成为0.2mol/LKCl、5...

【专利技术属性】
技术研发人员:张敏程发良柳鹏谢世磊王寿山
申请(专利权)人:东莞理工学院
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1