一种用于串联IGBT的均压保护电路制造技术

技术编号:15517045 阅读:267 留言:0更新日期:2017-06-04 07:48
本发明专利技术公开了一种用于串联IGBT的均压保护电路,包括电压采集模块、第i比较器、控制模块以及栅极电阻模块;其中,i为1~N的任意整数,N为自然数;所述电压采集模块的第i输出端连接第i比较器,所述第i比较器的第一输出端连接栅极电阻模块的第i输入端,第一比较器的第二输出端连接控制模块的输入端,所述控制模块的输出端连接栅极电阻模块的第N+1输入端,所述栅极电阻模块的输出端作为所述均压保护电路的输出端。本发明专利技术利用设定阈值,并根据集射极电压信号来获取方波信号,从而更改栅极电阻的大小,可以调整集射极电压的上升速率,减少了峰值电压,同时抑制了因信号传递线路杂散参数不同带来的过压影响,可以避免IGBT在串联工作当前关断阶段与整个工作周期中的过压损坏风险。

【技术实现步骤摘要】
一种用于串联IGBT的均压保护电路
本专利技术属于电力电子领域,更具体地,涉及一种用于串联IGBT的均压保护电路。
技术介绍
由绝缘栅双极型晶体管(InsulatedGateBipolarTransistor,IGBT)组成的固态电力电子开关具有开关速度快,可控性强,寿命长的特点,同时为了应用于高电压领域,须将多个IGBT相互串联使用以达到较高的电压等级,该方案效果好同时成本低,故得到了广泛的关注与应用。在IGBT串联使用时,由于各个半导体器件之间的细微差异以及线路的寄生电感等影响,会导致开关过程中各器件承压不均衡,极大的影响了开关的使用寿命和工作效率,甚至会造成器件击穿损坏。保证半导体器件在开关过程中的电压分布均衡是实现高压固态电力电子开关的关键。对此现有技术有多种解决方法:第一种方法是在驱动端采用反馈控制实现较为精确的器件电压动态调整,使各个IGBT的集射极电压趋于一致,然而该电路的结构复杂,若其中某路控制器出现故障则该路IGBT必然损坏,随着器件串联数目增多,控制复杂度也大幅提升;第二种方法是在功率端并联动态缓冲电路、静态均压电路,来吸收线路中存在的电感能量以避免过电压,通过静态均压电路来减缓半导体器件因漏电流不同而导致的静态电压不均衡问题,该方案随着串联器件数目增多,会增加整个装置的体积;同时,由于动态缓冲电路均为无源器件,只能较为粗略的降低器件峰值电压,并且在整个工作周期中都会动作从而带来较大的损耗。因此,当前高压固态开关领域内通过两种方案的结合解决串联半导体电压不均衡问题,如非专利文献《IEEETransactionsonPowerElectronics》,2015,30(8):4165-4174中公开了一种利用反馈控制实现串联IGBT的有源电压平衡的方法。利用该方法,动态缓冲电路采用电阻-电容方案,静态均压电路采用电阻方案,驱动反馈控制采用串联瞬态箝位二极管(TVS),由于瞬态箝位二极管会在一定电压下击穿,当IGBT关断时,通过检测瞬态箝位二极管中的电流,可以判断串联时各个IGBT升压至某设定集射极电压的时间,将该信息通过光纤传送至控制器从而在下一周期调整各路IGBT开关信号的相对延迟时间。其一、在该方案中,相同规格的瞬态箝位二极管,其动作电压存在较大差异,另外,同一个瞬态箝位二极管,其动作电压也会随其温度变化,因此使用瞬态箝位二极管会带来极大的反馈误差,而一般高压IGBT关断时间在1us~2us左右,该误差会极大的影响控制效果甚至反而造成IGBT过压损坏;其二、为避免瞬态箝位二极管因频繁击穿而损坏,一般均设置动作电压为IGBT实际工作电压的115%~120%,那么就会存在某些IGBT的瞬态箝位二极管因电压分布不匀而并不击穿的情况,也会造成反馈误差。其三、在该方案中,使用瞬态箝位二极管来投切电容、电阻,其馈入IGBT控制端的电流较小使作用效果存在较大延时,并且也存在前述的动作电压不稳问题。
技术实现思路
针对现有技术的缺陷,本专利技术的目的在于提供一种用于串联IGBT的均压保护电路,旨在解决现有技术中IGBT在串联工作时均压与过压保护问题。本专利技术提供了一种用于串联IGBT的均压保护电路,包括电压采集模块、N个比较器、控制模块以及栅极电阻模块;所述N个比较器分别为第一比较器、第二比较器、…至第N比较器,N为自然数;所述电压采集模块的第i输出端连接第i比较器,所述第i比较器的第一输出端连接栅极电阻模块的第i输入端,第一比较器的第二输出端连接控制模块的输入端,所述控制模块的输出端连接栅极电阻模块的第N+1输入端,所述栅极电阻模块的输出端作为所述均压保护电路的输出端,i为1~N的整数;所述电压采集模块用于获取与集射极电压信号对应的低电压信号;所述第i比较器用于通过将所述低电压信号与第i阈值进行比较,将所述低电压信号转换为第i方波信号,所述第i阈值小于所述低电压信号的峰值;所述控制模块用于根据第一方波信号,发出驱动信号;所述栅极电阻模块用于根据所述第i控制信号以及驱动信号,改变整体阻值,并获得IGBT的栅射集电压信号。优选地,所述第i比较器的延时小于20ns。优选地,所述第i阈值的纹波幅度低于100mv。优选地,N≥2,且第一阈值至第N阈值依次递增。作为进一步优选地,N=2,所述第一阈值为低电压信号的峰值的1/3~2/5,所述第二阈值为低电压信号的峰值的2/3~4/5。优选的,所述控制模块包括控制单元、隔离单元以及驱动单元,所述隔离单元的输入端作为所述控制模块的输入端,交互端连接控制单元的交互端,输出端连接驱动单元的输入端,所述驱动单元的输出端作为所述控制模块的输出端;所述控制单元用于根据第一方波信号,发出单极性、低幅值的驱动信号,所述隔离单元用于隔离控制单元与第一比较器,以及用于隔离控制单元与驱动模块,所述驱动模块用于根据所述单极性、低幅值的驱动信号,获取双极性、高幅值的驱动信号。作为进一步优选地,所述隔离单元包括以光纤连接的第一光纤收发模块以及第二光纤收发模块,所述第一光纤收发模块的输入端作为所述隔离单元的输入端,输出端作为所述隔离单元的输出端,所述第二光纤收发模块的交互端作为所述隔离单元的交互端。优选地,所述电压采集模块包括均压电阻、采样电阻以及电压采集单元,所述均压电阻的第一端用于连接IGBT的第一端,第二端连接所述采样电阻的第一端以及电压采集模块的第一输入端,所述采样电阻的第二端连接电压采集模块的第二输入端,并用于连接IGBT的第二端;所述均压电阻用于调整IGBT的静态电压,所述采样电阻用于获取集射极电压信号,所述电压采集单元用于将集射极电压信号转换为低电压信号。作为进一步优选地,所述电压采集单元的延时小于150ns。作为进一步优选地,所述均压电阻和采样电阻的温度漂移小于150ppm/℃。优选地,所述集射极电压信号的峰值小于10V,所述低电压信号的峰值为5V。优选地,所述栅极电阻模块包括基础电阻、N个驱动器、N个电阻以及N个半导体开关,所述N个驱动器分别为第一驱动器、第二驱动器、…至第N驱动器,所述N个电阻分别为第一电阻、第二电阻、…至第N电阻,所述N个半导体开关分别为第一半导体开关、第二半导体开关、…至第N半导体开关,所述第i电阻与第i半导体开关串联形成第i串联电路,所述第i串联电路与基础电阻并联;所述第i电阻的阻值小于基础电阻;所述第i驱动器的输入端作为所述栅极电阻模块的第i输入端,输出端连接第i半导体开关的控制端,所述基础电阻的输入端作为所述栅极电阻模块的第N+1输入端,输出端作为所述栅极电阻模块的输出端;所述第i驱动器用于根据第i方波信号,获得第i控制信号,所述第i半导体开关用于根据所述第i控制信号,导通或分断第i串联电路,从而改变所述栅极电阻模块的整体阻值。作为进一步优选地,所述第i驱动器的延时小于20ns。作为进一步优选地,N≥2,且第一电阻至第N电阻的阻值依次递增。作为更进一步优选地,N=2,所述第一电阻的阻值为第二电阻的1/4~1/2,所述第二电阻的阻值为基础电阻的1/6~1/3。本专利技术提出的方案具有以下有益效果:1、本专利技术利用设定的第i阈值,并根据集射极电压信号来获取方波信号,从而更改栅极电阻的大小,可以增加或减缓集射极电压的上升速率,同时减少了集射极电压的峰值,抑制本文档来自技高网
...
一种用于串联IGBT的均压保护电路

【技术保护点】
一种用于串联IGBT的均压保护电路,其特征在于,包括电压采集模块、第i比较器、控制模块以及栅极电阻模块;其中,i为1~N的整数,N为自然数;所述电压采集模块的第i输出端连接第i比较器,所述第i比较器的第一输出端连接栅极电阻模块的第i输入端,第一比较器的第二输出端连接控制模块的输入端,所述控制模块的输出端连接栅极电阻模块的第N+1输入端,所述栅极电阻模块的输出端作为所述均压保护电路的输出端;所述电压采集模块用于获取与集射极电压信号对应的低电压信号;所述第i比较器用于通过将所述低电压信号与第i阈值进行比较,将所述低电压信号转换为第i方波信号,所述第i阈值小于所述低电压信号的峰值;所述控制模块用于根据第一方波信号,发出驱动信号;所述栅极电阻模块用于根据所述第i控制信号以及驱动信号,改变整体阻值,并获得IGBT的栅射集电压信号。

【技术特征摘要】
1.一种用于串联IGBT的均压保护电路,其特征在于,包括电压采集模块、第i比较器、控制模块以及栅极电阻模块;其中,i为1~N的整数,N为自然数;所述电压采集模块的第i输出端连接第i比较器,所述第i比较器的第一输出端连接栅极电阻模块的第i输入端,第一比较器的第二输出端连接控制模块的输入端,所述控制模块的输出端连接栅极电阻模块的第N+1输入端,所述栅极电阻模块的输出端作为所述均压保护电路的输出端;所述电压采集模块用于获取与集射极电压信号对应的低电压信号;所述第i比较器用于通过将所述低电压信号与第i阈值进行比较,将所述低电压信号转换为第i方波信号,所述第i阈值小于所述低电压信号的峰值;所述控制模块用于根据第一方波信号,发出驱动信号;所述栅极电阻模块用于根据所述第i控制信号以及驱动信号,改变整体阻值,并获得IGBT的栅射集电压信号。2.根据权利要求1所述的均压保护电路,其特征在于,N≥2,且第一阈值至第N阈值依次递增。3.根据权利要求2所述的均压保护电路,其特征在于,N=2,所述第一阈值为低电压信号的峰值的1/3~2/5,所述第二阈值为低电压信号的峰值的2/3~4/5。4.根据权利要求1所述的均压保护电路,其特征在于,所述第i比较器的延时小于20ns。5.根据权利要求1所述的均压保护电路,其特征在于,所述控制模块包括控制单元、隔离单元以及驱动单元,所述隔离单元的输入端作为所述控制模块的输入端,交互端连接控制单元的交互端,输出端连接驱动单元的输入端,所述驱动单元的输出端作为所述控制模块的输出端;所述控制单元用于根据第一方波信号,发出单极性、低幅值的驱动信号,所述隔离单元用于隔离控制单元与第一比较器,以及用...

【专利技术属性】
技术研发人员:张明王栋煜
申请(专利权)人:华中科技大学
类型:发明
国别省市:湖北,42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1