一种硒化锡@碳纳米纤维复合材料及其制备方法和应用技术

技术编号:15511531 阅读:214 留言:0更新日期:2017-06-04 04:32
本发明专利技术涉及一种硒化锡@碳纳米纤维复合材料及其制备方法和应用,其解决了现有材料制备方法复杂、成本较高的技术问题,原位生成的硒化锡均匀地分散在碳纳米纤维中,所述碳纳米纤维直径在300~400纳米。本发明专利技术同时提供了其制备方法和应用。本发明专利技术可广泛应用于电极材料的制备领域。

Selenium tin @ carbon nanofiber composite material, preparation method and application thereof

The invention relates to a tin selenide @ carbon nano fiber composite material and preparation method and application thereof, which solves the existing material preparation method of complex technical problems, high cost, tin selenide in situ generated uniformly dispersed in nano carbon fiber, the carbon nano fiber diameter in 300 ~ 400 nm. The invention also provides a preparation method and an application thereof. The invention can be widely used in the preparation field of electrode materials.

【技术实现步骤摘要】
一种硒化锡@碳纳米纤维复合材料及其制备方法和应用
本专利技术涉及电池材料领域,具体说是一种硒化锡@碳纳米纤维复合材料及其制备方法和应用。
技术介绍
随着科技的发展和进步,人们对能源的需求日益增加,导致传统石油燃料日渐枯竭,温室效应等环境问题也日益加剧,故清洁高效的储能设备开发日益迫切。目前商业化的锂离子电池由于其较高的能量密度,优异的循环性能以及自放电小等优点,被广泛应用于便携式电子设备,如笔记本电脑、智能手机以及照相机等。然而,随着便携设备性能的提升,以及大型电动设备如电动汽车等应用推广,以锂离子电池目前的能量密度及功率密度已经渐渐不能满足人们的需求。因此,开发更高性能的锂离子电池迫在眉睫。寻找高容量的负极材料以替换传统的负极材料如石墨是提升性能的途径之一。硒化锡作为四六主族化合物中的一员,是一种P型半导体材料,相比于氧化锡具有更高的电导率,然而纳米级硒化锡合成相对复杂,成本较高,当其作为锂离子电池负极材料时,在充放电过程中会产生较大的体积膨胀,引起较差的循环性能,从而限制了其实际应用。碳包覆硒化锡是改善其性能的常用方法之一。Zhang等采用球墨法制备一种碳包覆硒化锡纳米颗粒的复合材料,经过碳包覆后可以有效地缓解硒化锡在充放电过程中体积变化所引起的性能衰减[ZhianZhang,XingxingZhao,JieLi,ElectrochimicaActa,176(2015)1296-1301]。Zhang等以球墨法制备的硒化锡纳米粉体作为活性物质,通过静电纺丝法制备了SnSe@CNFs复合材料。电化学测试表明,这种一维的碳纳米纤维包覆硒化锡纳米颗粒后可以显著提升其电化学性能。[LongZhang,LeiLu,DechaoZhang,ElectrochimicaActa,209(2016)423-429]。但是,球墨法对原料纯度要求很高,溶剂法合成又相对复杂,故寻找更加简单的硒化锡@碳复合材料的制备方法依然很有必要。
技术实现思路
本专利技术为了解决现有材料制备方法复杂、成本较高的技术问题,提供一种制备方法简单、所得材料具有良好性能的硒化锡@碳纳米纤维复合材料及其制备方法和应用。为此,本专利技术提供一种硒化锡@碳纳米纤维复合材料,该复合材料原位生成的硒化锡均匀地分散在碳纳米纤维中,所述碳纳米纤维直径在300~400纳米。本专利技术同时提供了其制备方法,包括如下步骤:(1)配置电纺丝前驱体溶液:将3.5~4.6mmol锡源和3.5~4.6mmol硒源溶解于聚合物溶液中,聚合物浓度为0.03~0.1g/mL,充分搅拌使所有原料溶解形成均一溶液后,得到前驱体溶液;(2)静电纺丝法制备复合材料纳米纤维:注射器针头内径为0.6~1.6mm,温度15~35℃,相对湿度小于40%,施加电压范围10~23kV,注射速率为0.3~2.0ml/h,距离接受装置距离为10~25cm,采用单针或多针头纺丝;(3)将步骤(2)中得到的纳米纤维膜在氮气气氛中进行热处理,升温速度1~10℃/min,在500~700摄氏度下保温1~5h,即得到硒化锡@碳纳米纤维复合材料。优选的,上述步骤(1)的聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚乙烯醇、聚酰亚胺中的一种或两种组合。优选的,溶剂为无水乙醇、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、N-甲基-2-吡咯烷二酮、丙烯碳酸酯、乙酸乙酯、丁烯碳酸酯、二甲基碳酸酯、γ-丁内酯的一种或多种组合。优选的,步骤(1)的锡源有四氯化锡、氯化亚锡、乙酸锡、2-乙基己酸锡盐、2-乙基己基酯二甲基锡、二丁基二月桂酸锡、二丁基单丁酯双马来酸锡、二顺丁烯二酸单乙酯二辛基锡、二顺丁烯二酸单异辛酯二辛基锡的一种或多种组合。优选的,步骤(1)的硒源有硒粉、二氧化硒、硒酸钠、亚硒酸钠中的一种或多种组合。本专利技术同时提供一种硒化锡@碳纳米纤维复合材料在锂离子电池负极中的应用。优选的,其包括如下步骤:将硒化锡@碳纳米纤维复合材料与导电炭黑通过研钵研磨方式充分混合均匀;随后依次加入聚偏氟乙烯和N-甲基吡咯烷酮,充分搅拌均匀成糊状;把泡沫镍片压平,加压压力为10~20MPa/cm2,把上述混合好的材料均匀涂在泡沫镍片表面,将制好的极片于60℃真空干燥12小时。本专利技术提供的碳纳米纤维中原位生成高容量活性物质硒化锡纳米颗粒的方法,其中,相互搭接的碳纳米纤维形成三维导电网络,纤维之间的空隙可以使电解液更好的浸润,均匀连续的碳纳米纤维包覆硒化锡可以缓解充放电过程中的体积膨胀,从而同时改善电极的循环性能以及倍率性能。本专利技术的硒化锡@碳纳米纤维复合材料按如下步骤制成电极,并进行电化学性能测试:将硒化锡@碳纳米纤维复合材料(80wt%)与导电炭黑Super-P(10wt%)通过研钵研磨方式充分混合均匀。随后依次加入聚偏氟乙烯(10wt%)和20倍于聚偏氟乙烯质量的N-甲基吡咯烷酮,充分搅拌均匀成糊状。把泡沫镍片压平,加压压力为10~20MPa/cm2,把上述混合好的材料均匀涂在泡沫镍片表面,将制好的极片于60℃真空干燥12小时。在手套箱中组装成电池,进行电化学性能测试。本专利技术具有以下优点:(1)本专利技术采用静电纺丝法制备硒化锡@碳纳米纤维复合材料工艺简单易行、成本低廉且环境友好。(2)本专利技术提供的硒化锡@碳纳米纤维复合材料具有优异的储锂性能,原位生成的硒化锡具有更小的粒径从而具有更大的比表面积,在锂离子迁移过程中具有更高的反应活性。附图说明图1是本专利技术实施例1制备的硒化锡@碳纳米纤维复合材料TEM图;图2是本专利技术实施例2制备的硒化锡@碳纳米纤维复合材料的XRD曲线;图3是本专利技术实例3制备的硒化锡@碳纳米纤维复合材料作为锂离子电池负极材料性能曲线。具体实施方式下面结合附图和本专利技术的制备方法对本专利技术制备的SnSe纳米粉体作进一步描述:实施例1(1)配置静电纺丝前驱体溶液:将1g聚丙烯腈(PAN;Mw=150000)溶解于10mLN,N-二甲基甲酰胺(DMF)中,再60℃下搅拌5h直至完全溶解。再加入4mmol氯化锡和4mmol二氧化硒,在磁力搅拌下均匀分散所有反应物,得到静电纺丝前驱体溶液。(2)静电纺丝法制备聚合物纳米纤维膜:将静电纺丝溶液加入注射器,针头内径1.2mm,温度25℃,相对湿度10%。设置注射速率0.5ml/h,电压17kV,接收滚筒转速900r/min,控制接收距离15cm。纺丝10h后得到聚合物纳米纤维膜。(3)热处理工艺:对步骤(2)中得到的聚合物纳米纤维膜在氮气气氛下、600℃进行热处理,保温时间为2h,设置升温速率3℃/min。自然冷却至室温后,即得到硒化锡@碳纳米纤维复合材料。实施例2(1)配置静电纺丝前驱体溶液:将1g聚乙烯吡咯烷酮(PVP;Mw=1300000)溶解于10mL无水乙醇中,再室温下搅拌4h直至完全溶解。再加入4mmol乙酸硒和4mmol硒粉,在磁力搅拌下均匀分散所有反应物,得到静电纺丝前驱体溶液。(2)静电纺丝法制备聚合物纳米纤维膜:将静电纺丝溶液加入注射器,针头内径0.9mm,温度25℃,相对湿度10%。设置注射速率0.4ml/h,电压12kV,接收滚筒转速600r/min,控制接收距离15cm。纺丝10h后得到聚合物纳米纤维膜。(3)热处理工艺:对步骤(2)中得到的聚合物纳米纤维膜在氮气气氛下、700℃进行热处本文档来自技高网
...
一种硒化锡@碳纳米纤维复合材料及其制备方法和应用

【技术保护点】
一种硒化锡@碳纳米纤维复合材料,其特征是原位生成的硒化锡均匀地分散在碳纳米纤维中,所述碳纳米纤维直径在300~400纳米。

【技术特征摘要】
1.一种硒化锡@碳纳米纤维复合材料,其特征是原位生成的硒化锡均匀地分散在碳纳米纤维中,所述碳纳米纤维直径在300~400纳米。2.如权利要求1所述的硒化锡@碳纳米纤维复合材料的制备方法,其特征是包括如下步骤:(1)配置电纺丝前驱体溶液:将3.5~4.6mmol锡源和3.5~4.6mmol硒源溶解于聚合物溶液中,聚合物浓度为0.03~0.1g/ml,充分搅拌,使所有原料溶解形成均一溶液后,得到前驱体溶液;(2)静电纺丝法制备复合材料纳米纤维:注射器针头内径为0.6~1.6mm,温度15~35℃,相对湿度小于40%,施加电压范围10~23kV,注射速率为0.3~2.0ml/h,距离接受装置距离为10~25cm,采用单针或多针头纺丝;(3)将步骤(2)中得到的纳米纤维膜在氮气气氛中进行热处理,升温速度1~10℃/min,在500~700摄氏度下保温1~5h,即得到硒化锡@碳纳米纤维复合材料。3.根据权利要求2所述的硒化锡@碳纳米纤维复合材料的制备方法,其特征在于,所述步骤(1)的聚合物为聚乙烯吡咯烷酮、聚丙烯腈、聚乙烯醇、聚酰亚胺中的一种或两种组合。4.根据权利要求2所述的硒化锡@碳纳米纤维复合材料的制备方法,其特征在于,所...

【专利技术属性】
技术研发人员:兰金叻原浩成杨小平于运花
申请(专利权)人:北京化工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1