一种聚焦式太阳能热发电系统的多维分析方法技术方案

技术编号:15198537 阅读:243 留言:0更新日期:2017-04-21 17:44
本发明专利技术公开了一种聚焦式太阳能热发电系统的多维分析方法,并提出一种多维耦合模型。该多维耦合模型针对不同的问题采用不同的子模型,如聚光集热计算借助于蒙特卡洛光线追迹法,热工水力参数采用一维离散模型,集热管温度分布采用二维有限模型,热应力问题采用三维有限元模型,热力循环计算则采用零维模型。这种耦合方式可以实现精度与效率双优,同时也能获得局部详细信息与系统整体性能,该模型的利用具有极大的灵活性。可以根据获得的热工水力参数调节运行系统,可以用来预测各种不确定因素对电厂性能的影响,可以实时定位监测集热管的热应力应变情况。同时该模型方法也很容易应用于其他聚光形式的太阳能热发电系统。

Multi dimensional analysis method for focusing solar thermal power generation system

The invention discloses a multidimensional analysis method of a focusing type solar thermal power generation system. The multidimensional coupling model by different sub models for different problems, such as light and heat collecting is calculated by means of Umontkalo ray tracing method, thermal hydraulic parameters using one-dimensional discrete model, the two-dimensional finite model of tube temperature distribution, thermal stress problem using a three-dimensional finite element model, the thermodynamic calculation of the zero dimensional model. This coupling method can realize Shuangyou accuracy and efficiency, but also to get the overall performance of the local detailed information and system, the model has great flexibility. The operating system can be adjusted according to the obtained thermal hydraulic parameters, which can be used to predict the influence of various uncertain factors on the performance of the power plant. At the same time, the model can be easily applied to other solar thermal power generation systems.

【技术实现步骤摘要】

本专利技术属于太阳能热利用
,具体涉及一种聚焦式太阳能热发电系统的多维分析方法
技术介绍
随着新能源技术的不断提高,人类社会对传统能源的依赖将日趋减小,这既有助于缓解能源紧俏问题,也有助于改善环境污染问题,其中太阳能热发电技术越来越受到人们的青睐。太阳能热发电系统的稳定性,可靠性以及安全性严重制约其商业化发展。聚焦式太阳能热发电系统作为一个复杂的光-热-电转换系统,除了伴随着突出的热结构问题外,一系列不确定因素也对系统平稳性造成冲击,诸如雾霾,云层遮挡等。能够准确有效预测这些因素的影响,对系统的操作运行有积极作用。尽管各国学者在这一领域做了丰富的研究,但成果都过于单一化、分散化,割裂了局部与系统整体之间的联系,同时也缺乏有效的即时预测模型。构建一套精准而高效的光-热-电-结构耦合模型,既能及时监测热工水力参数,又能定位监测热应力-应变突出的管段,还能预测在不同干扰作用下系统性能,将会极大地坚定太阳能热电产业的投资信心,促进太阳能热电产业的发展。
技术实现思路
本专利技术的目的在于克服上述现有技术的缺点,提供一种聚焦式太阳能热发电系统的多维分析方法,能高效地实现太阳能到电能的转化,同时提供详细的热工水力参数,定向监测集热器热应力应变问题,预测系统性能。为达到上述目的,本专利技术采用以下技术方案予以实现:一种聚焦式太阳能热发电系统的多维分析方法,包括以下步骤:1)针对太阳能热发电系统聚光器结构建立三维光学计算模型,采用蒙特卡洛光线追迹法计算集热管接受的辐射热流密度分布;2)沿程对传热工质采用一维离散模型,用于求解热工水力参数;3)采用有限容积法,对集热器建立二维离散模型,用于求解集热管温度分布;4)采用有限元法,建立集热管三维离散模型,加载二维温度边界条件,求解集热管的应力应变问题;5)热力循环采用零维模型,输入主蒸汽参数温度t,压力p和流量得到系统的输出电功W:本专利技术进一步的改进在于:所述步骤1)中,采用蒙特卡洛光线追迹法计算集热管接受的辐射热流密度分布的具体方法如下:建立聚光器的三维几何模型;设定在抛物槽镜面、真空玻璃管和金属集热管表面可能发生的基本光学事件、初始化光子初始位置及入射方向;启动程序直至计算结束后统计光子在集热管壁面的分布并转化为相应的热流密度分布;基本光学事件包括反射、吸收、透射或折射。所述步骤2)和3)中求解热工水力参数和集热管温度分布的具体方法如下:获得集热管热流密度边界后,根据一维离散模型1D和二维离散模型2D建立集热管的热平衡关系,求解热工水力参数和集热管温度分布;其中一维离散模型1D相邻单元温度关系为:集热管的二维传热控制方程为:所述步骤4)中,获得集热管温度分布后,根据工质的温度与焓值以及集热管轴向温差的大小判断是否进行三维应力结构分析,即预判是否为集热管承受的应力或变形最大位置;如果判定是最易出现安全问题的集热管部分,则调用三维离散模型;热结构问题基本控制方程包括三维平衡方程、本构方程和应变位移关系,柱坐标系下分别为:求解热应力应变问题时,集热管二维温度分布需作为温度边界条件加载给三维模型,用于解决纯三维计算耗时耗内存的缺点。与现有技术相比,本专利技术具有以下有益效果:本专利技术能够定向监测热应力问题突出的地方,可以模拟各种干扰对系统性能的影响;同时各子模型可以以不同的耦合方式有针对性地解决不同层面的问题。采用该多维耦合模型,使得计算模型详略得当、灵活自如,既有效保留了必要的局部信息和整体性能,又能研究两者之间的相互作用,还实现了计算精度和计算效率的双优,为太阳能热发电系统集成化设计运行提供了高效可靠的分析结果。【附图说明】图1为本专利技术主要子模块模型;图2为本多维耦合模型程序结构;图3由MCRT求得的集热管热流密度分布;图4集热管内外壁面平均温度分布;图5为集热管应力及变形情况。【具体实施方式】下面结合附图对本专利技术做进一步详细描述:参见图1,本专利技术针对太阳能热发电系统聚光器结构建立三维光学计算模型,采用蒙特卡洛光线追迹法(MCRT)计算集热管接受的辐射热流密度分布(见图1);沿程对传热工质采用一维离散模型(1D),用于求解热工水力参数;采用有限容积法,对集热器建立二维(周向和轴向)离散模型(2D)用于求解集热管温度分布(见图1);采用有限元法建立集热管三维离散模型(3D),加载[0006]中二维温度边界条件,求解集热管的应力应变问题(见图1);热力循环采用零维模型(0D),输入[0006]主蒸汽参数温度t,压力p和流量求解系统的输出电功W;即四个子模型协同运行才能实现目标[0003]。0-1D作为外循环负责热工水力及热电转化计算;1-2D模型共同求解热工水力参数和集热管的温度场;2D温度分布可以预判是否启用3D模型并作为温度边界条件求解热应力应变问题;一旦获得集热管的热变形数据即可反馈至[0005]更新计算集热管热流密度分布,进一步根据0-1D模型研究其变形对系统性能的影响。参见图2,该多维耦合模型算法结构为:采用MCRT求解集热管辐射热流密度分布。该过程主要包括:建立聚光器的三维几何模型;设定在抛物槽镜面,真空玻璃管和金属管表面可能发生的基本光学事件(如反射,吸收,透射,折射);初始化光子初始位置及入射方向;启动程序直至计算结束后统计光子在集热管壁面的分布并转化为相应的热流密度分布(图3)。获得集热管热流密度边界后,根据一维离散模型1D、二维离散模型2D建立集热管的热平衡关系求解热工水力参数和集热管温度分布。其中一维离散模型1D相邻单元温度关系为:集热管的二维传热控制方程为:求解的二维温度为集热管内外壁面温度分布,内外壁面平均温度分布如图4所示。求解完毕后,一方面热工水力参数可以作为参考来调整电厂的运行,另一方面出口蒸汽参数可以直接传递给零维模型计算净发电量等(见公式(1))另一方面,获得集热管温度分布后,根据工质的温度与焓值以及集热管轴向温差的大小判断是否进行三维应力结构分析,即预判断是否是集热管承受的应力或变形最大位置。如果判定是最易出现安全问题的集热管部分,则调用三维离散模型3D。热结构问题基本控制方程包括三维平衡方程,本构方程和应变位移关系,柱坐标系下分别为:求解热应力应变问题时,集热管二维温度分布需作为温度边界条件加载给三维离散模型3D,这样可以解决纯三维计算耗时耗内存的缺点。图5为集热管的三维应力及变形情况。该分析结果用于判断集热管是否能够安全运行以及可能的工作寿命,为潜在的危险作预警。同时集热管弯曲变形数据可以直接反馈至MCRT部分,用于重新计算热流密度分布情况,然后继续调用一维离散模型1D、二维离散模型2D和零维模型进一步研究弯曲后集热性能的变化。这里MCRT可以获得镜场的聚光集热性能以及详细的辐射热流密度分布,一维离散模型1D、二维离散模型2D可以获得详细的热工水力参数和集热管的温度分布,零维模型可以获得系统层面的性能参数,三维离散模型3D可以根据需要,定点监测集热管热结构情况,而各子模型的耦合,即本专利技术所提的多维耦合模型,完全能够灵活高效地解决聚光式太阳能热发电系统多层面的问题。以上内容仅为说明本专利技术的技术思想,不能以此限定本专利技术的保护范围,凡是按照本专利技术提出的技术思想,在技术方案基础上所做的任何改动,均落入本专利技术权利要求书的保护范围之内本文档来自技高网...
一种聚焦式太阳能热发电系统的多维分析方法

【技术保护点】
一种聚焦式太阳能热发电系统的多维分析方法,其特征在于,包括以下步骤:1)针对太阳能热发电系统聚光器结构建立三维光学计算模型,采用蒙特卡洛光线追迹法计算集热管接受的辐射热流密度分布;2)沿程对传热工质采用一维离散模型,用于求解热工水力参数;3)采用有限容积法,对集热器建立二维离散模型,用于求解集热管温度分布;4)采用有限元法,建立集热管三维离散模型,加载二维温度边界条件,求解集热管的应力应变问题;5)热力循环采用零维模型,输入主蒸汽参数温度t,压力p和流量得到系统的输出电功W:W=f(t,p,m·)---(1).]]>

【技术特征摘要】
1.一种聚焦式太阳能热发电系统的多维分析方法,其特征在于,包括以下步骤:1)针对太阳能热发电系统聚光器结构建立三维光学计算模型,采用蒙特卡洛光线追迹法计算集热管接受的辐射热流密度分布;2)沿程对传热工质采用一维离散模型,用于求解热工水力参数;3)采用有限容积法,对集热器建立二维离散模型,用于求解集热管温度分布;4)采用有限元法,建立集热管三维离散模型,加载二维温度边界条件,求解集热管的应力应变问题;5)热力循环采用零维模型,输入主蒸汽参数温度t,压力p和流量得到系统的输出电功W:W=f(t,p,m·)---(1).]]>2.根据权利要求1所述的聚焦式太阳能热发电系统的多维分析方法,其特征在于,所述步骤1)中,采用蒙特卡洛光线追迹法计算集热管接受的辐射热流密度分布的具体方法如下:建立聚光器的三维几何模型;设定在抛物槽镜面、真空玻璃管和金属集热管表面可能发生的基本光学事件、初始化光子初始位置及入射方向;启动程序直至计算结束后统计光子在集热管壁面的分布并转化为相应的热流密度分布;基本光学事件包括反射、吸收、透射或折射。3.根据权利要求1所述的聚焦式太阳能热发电系统的多维分析方法,所述步骤2)和3)中求解热工水力参数和集热管温度分布的具体方法如下:获得集热管热流密度边界后,根据一维离散模型1D和二维离散模型2D建立集热管的热平衡关系,求解热工水力参数和集热管温度分布;其中一维离散模型1D相邻单元温度关系为:ti+1=ti+Qgaincpm·---(2)]]>集热管的二维传热控制方程为:1r∂∂r(kr∂t∂r)+1r2∂∂θ(k∂t∂θ)=0---(3).]]>4.根据权利要求1所述的聚焦式太阳能热发电系统的多维分析方法,所述步骤4)中,获得集热管温度分布后,根据工质的温度与焓值以及集热管轴向温差的大小判断是否进行三维应力结构分析,即预判是否为集热管承受的应力或变形最大位置;如果判定是最易出现安全问题的集热管部分,则调用三维离散模型;热结构问题基本控制方程包括三维平衡方程、本构方程和应变位移关系,柱坐标系下分别为:∂δr∂r+1r∂τθr∂&the...

【专利技术属性】
技术研发人员:李印实李陆孙杰
申请(专利权)人:西安交通大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1