当前位置: 首页 > 专利查询>李福军专利>正文

高压线路除冰平台制造技术

技术编号:15074392 阅读:159 留言:0更新日期:2017-04-06 19:37
本发明专利技术涉及一种高压线路除冰平台,包括感应导线、电容测量电路、微处理器和机器人主体结构,感应导线平行于高压线路架设,电容测量电路用于测量感应导线和高压线路之间的电容值,微处理器用于基于电容值确定高压线路的实时冰层厚度,机器人主体结构与微处理器通过无线通信链路连接,用于基于高压线路的实时冰层厚度对控制对高压线路除冰的力度。通过本发明专利技术,能够准确检测到高压线路的冰层厚度,并能够制定与冰层厚度相适应的除冰策略。

High voltage line deicing platform

The invention relates to a high-voltage transmission line deicing platform, including the induction wire, capacitance measurement circuit, a microprocessor and a robot body structure, the induction wire set up parallel to the high voltage lines, capacitance measuring circuit for measuring capacitance between the induction wire and high-voltage line value, the microprocessor is used for capacitance values to determine the real-time ice thickness based on high voltage transmission line. The main structure and the microprocessor robot is connected to a wireless communication link, for real-time ice thickness based on high voltage line intensity of control on high voltage transmission line deicing. Through the invention, the ice layer thickness of the high voltage line can be accurately detected, and the deicing strategy which is suitable for the thickness of the ice layer can be formulated.

【技术实现步骤摘要】
本专利技术是申请号为2015109554125、申请日为2015年12月17日、发明名称为“高压线路除冰平台”的专利的分案申请。
本专利技术涉及高压线路领域,尤其涉及一种高压线路除冰平台。
技术介绍
输电电网远程运输电力的介质一般采用高压线路以提高电力传输的效率,然而,在气温达到零度以下时,水结成冰将会对线路、铁塔和铁塔基础产生破坏力,给人们的生活和工作带来极大的不便,也为区域经济发展造成巨大的损失。由于高压线路的特殊性,这时再采用传统的人力除冰方式,除了除冰效率低下以外,也容易造成人员伤亡。现有技术中,高压线路除冰的一种方案是,在搭建输电电网时,为高压线路“披”上一层超疏水涂层“外衣”,在遭遇低温冰冻雨雪灾害时,高压线路的防结冰覆冰能力将大幅提升50%-60%,从而减少电力系统安全事故发生。这种方式虽然达到了一定的防止结冰的效果,但由于防结冰覆冰能力终归有限,而且为整条高压线路都涂上超疏水涂层,经济成本非常高。现有技术中,还存在一些针对高压线路的巡线机器人的除冰控制方案,但由于输电电网设备过多、结构复杂,高压线路所在环境一般比较恶劣,而且机器人本身结构设计不合理,导致现有技术中的机器人除冰方案难以大批量应用,只能停留在实验室阶段;同时,现场电子冰层测量设备的缺失导致除冰效果达不到供电管理部门的要求。因此,需要一种新的高压线路除冰平台,能够对普遍使用、未经过任何处理的高压线路进行冰层检测和冰层消除,采用机械除冰方式替换人工除冰方式,提高除冰效率的同时,避免供电维护人员被高压线路击中,节约了大量的人力和物力。
技术实现思路
为了解决上述问题,本专利技术提供了一种基于电容测量冰层厚度的高压线路除冰平台,对现有的高压线路不需要进行任何处理,采用机器人在高压线路上行走的方式对整条高压线路进行自动除冰,其间,感应导线和电容测量电路的使用用于测量高压线路的实时冰层厚度,同时在优化机器人内部结构的同时,在机器人内增加除冰设备进行基于实时冰层厚度的自适应除冰,从而提高了冰层消除的效率。根据本专利技术的一方面,提供了一种基于电容测量冰层厚度的高压线路除冰平台,所述平台包括感应导线、电容测量电路、微处理器和机器人主体结构,感应导线平行于高压线路架设,电容测量电路用于测量感应导线和高压线路之间的电容值,微处理器用于基于电容值确定高压线路的实时冰层厚度,机器人主体结构与微处理器通过无线通信链路连接,用于基于高压线路的实时冰层厚度对控制对高压线路除冰的力度。更具体地,在所述基于电容测量冰层厚度的高压线路除冰平台中,包括:2根感应导线,平行且对称架设在高压线路的两侧;绝缘三角形支架,位于高压线路和2根感应导线之间,用于支撑固定高压线路和2根感应导线;温度补偿装置,包括3个温度传感器和2个温度补偿器,3个温度传感器分别设置在高压线路和2根感应导线的内部,2个温度补偿器分别设置在2根感应导线的内部,每一个温度补偿器通过比较其对应感应导线的温度与高压线路的温度,对其对应感应导线的温度进行补偿,以保证其对应感应导线的温度与高压线路的温度相同;电容测量电路,设置在绝缘三角形支架上,用于检测高压线路作为一个极板、2根感应导线作为另一个极板的电容器的电容值;微处理器,与电容测量电路连接,基于电容值确定高压线路的冰层厚度以作为实时冰层厚度输出;第一频分双工通信接口,设置在绝缘三角形支架上,与微处理器连接,用于无线发送实时冰层厚度;伸缩限位开关组合,包括六个伸缩限位开关,用于分别限制前方垂直伸缩臂、前方水平伸缩臂、中部垂直伸缩臂、中部水平伸缩臂、后方垂直伸缩臂和后方水平伸缩臂的伸缩距离;控制箱移动限位开关,用于限制控制箱的移动距离;机器人主体结构,包括前轮子结构、中轮子结构、后轮子结构、刹车子结构、前方气动伸缩子结构、后方气动伸缩子结构、中部气动伸缩子结构、底板、重心控制子结构和控制箱;前轮子结构处于底板上方,包括前方切削刀片、前方防切削板、前方驱动电机和前方行走轮,前方切削刀片用于切除前方高压线路处的冰层,前方防切削板与前方切削刀片连接,用于在前方切削刀片进行切削操作时卡在高压线路上,实现前方切削刀片与高压线路的隔离,前方行走轮采用塑料材料,具有与高压线路相适应的圆槽,前方驱动电机与前方切削刀片和前方行走轮分别连接,用于为前方切削刀片提供切削动力的同时,为前方行走轮提供行走动力;中轮子结构位于前轮子结构和中轮子结构中间,处于底板上方,包括中部驱动电机和中部行走轮组成,中部行走轮采用塑料材料,具有与高压线路相适应的圆槽,中部驱动电机与中部行走轮连接,用于为中部行走轮提供行走动力;后轮子结构处于底板上方,包括后方驱动电机和后方行走轮,后方行走轮采用塑料材料,具有与高压线路相适应的圆槽,后方驱动电机与后方切削刀片和后方行走轮分别连接,用于为后方切削刀片提供切削动力的同时,为后方行走轮提供行走动力;前方气动伸缩子结构位于前轮子结构和底板之间,用于将前轮子结构连接到底板上,包括前方腕关节、前方垂直伸缩臂、前方肘关节、前方水平伸缩臂和前方肩关节,前方腕关节将前轮子结构和前方垂直伸缩臂连接,前方垂直伸缩臂与前方肘关节连接,前方水平伸缩臂将前方肘关节与前方肩关节连接,前方肩关节与底板连接,前方垂直伸缩臂还与飞思卡尔MC9S12芯片电性连接以接收前方垂直伸缩控制信号,前方水平伸缩臂还与飞思卡尔MC9S12芯片电性连接以接收前方水平伸缩控制信号;中部气动伸缩子结构位于中轮子结构和底板之间,用于将中轮子结构连接到底板上,包括中部腕关节、中部垂直伸缩臂、中部肘关节、中部水平伸缩臂和中部肩关节,中部腕关节将中轮子结构和中部垂直伸缩臂连接,中部垂直伸缩臂与中部肘关节连接,中部水平伸缩臂将中部肘关节与中部肩关节连接,中部肩关节与底板连接,中部垂直伸缩臂还与飞思卡尔MC9S12芯片电性连接以接收中部垂直伸缩控制信号,中部水平伸缩臂还与飞思卡尔MC9S12芯片电性连接以接收中部水平伸缩控制信号;后方气动伸缩子结构位于后轮子结构和底板之间,用于将后轮子结构连接到底板上,包括后方腕关节、后方垂直伸缩臂、后方肘关节、后方水平伸缩臂和后方肩关节,后方腕关节将后轮子结构和后方垂直伸缩臂连接,后方垂直伸缩臂与后方肘关节连接,后方水平伸缩臂将后方肘关节与后方肩关节连接,后方肩关节与底板连接,后方垂直伸缩臂还与飞思卡尔MC9S12芯片电性连接以接收后方垂直伸缩控制信号,后方水平伸缩臂还本文档来自技高网
...
高压线路除冰平台

【技术保护点】
一种基于电容测量冰层厚度的高压线路除冰平台,所述平台包括感应导线、电容测量电路、微处理器和机器人主体结构,感应导线平行于高压线路架设,电容测量电路用于测量感应导线和高压线路之间的电容值,微处理器用于基于电容值确定高压线路的实时冰层厚度,机器人主体结构与微处理器通过无线通信链路连接,用于基于高压线路的实时冰层厚度对控制对高压线路除冰的力度。

【技术特征摘要】
1.一种基于电容测量冰层厚度的高压线路除冰平台,所述平台包括
感应导线、电容测量电路、微处理器和机器人主体结构,感应导线平行于
高压线路架设,电容测量电路用于测量感应导线和高压线路之间的电容
值,微处理器用于基于电容值确定高压线路的实时冰层厚度,机器人主体
结构与微处理器通过无线通信链路连接,用于基于高压线路的实时冰层厚
度对控制对高压线路除冰的力度。
2.如权利要求1所述的基于电容测量冰层厚度的高压线路除冰平台,
其特征在于,所述平台包括:
2根感应导线,平行且对称架设在高压线路的两侧;
绝缘三角形支架,位于高压线路和2根感应导线之间,用于支撑固定
高压线路和2根感应导线;
温度补偿装置,包括3个温度传感器和2个温度补偿器,3个温度传
感器分别设置在高压线路和2根感应导线的内部,2个温度补偿器分别设
置在2根感应导线的内部,每一个温度补偿器通过比较其对应感应导线的
温度与高压线路的温度,对其对应感应导线的温度进行补偿,以保证其对
应感应导线的温度与高压线路的温度相同;
电容测量电路,设置在绝缘三角形支架上,用于检测高压线路作为一
个极板、2根感应导线作为另一个极板的电容器的电容值;
微处理器,与电容测量电路连接,基于电容值确定高压线路的冰层厚
度以作为实时冰层厚度输出;
第一频分双工通信接口,设置在绝缘三角形支架上,与微处理器连接,
用于无线发送实时冰层厚度;
伸缩限位开关组合,包括六个伸缩限位开关,用于分别限制前方垂直
伸缩臂、前方水平伸缩臂、中部垂直伸缩臂、中部水平伸缩臂、后方垂直
伸缩臂和后方水平伸缩臂的伸缩距离;
控制箱移动限位开关,用于限制控制箱的移动距离;
机器人主体结构,包括前轮子结构、中轮子结构、后轮子结构、刹车

\t子结构、前方气动伸缩子结构、后方气动伸缩子结构、中部气动伸缩子结
构、底板、重心控制子结构和控制箱;
前轮子结构处于底板上方,包括前方切削刀片、前方防切削板、前方
驱动电机和前方行走轮,前方切削刀片用于切除前方高压线路处的冰层,
前方防切削板与前方切削刀片连接,用于在前方切削刀片进行切削操作时
卡在高压线路上,实现前方切削刀片与高压线路的隔离,前方行走轮采用
塑料材料,具有与高压线路相适应的圆槽,前方驱动电机与前方切削刀片
和前方行走轮分别连接,用于为前方切削刀片提供切削动力的同时,为前
方行走轮提供行走动力;
中轮子结构位于前轮子结构和中轮子结构中间,处于底板上方,包括
中部驱动电机和中部行走轮组成,中部行走轮采用塑料材料,具有与高压
线路相适应的圆槽,中部驱动电机与中部行走轮连接,用于为中部行走轮
提供行走动力;
后轮子结构处于底板上方,包括后方驱动电机和后方行走轮,后方行
走轮采用塑料材料,具有与高压线路相适应的圆槽,后方驱动电机与后方
切削刀片和后方行走轮分别连接,用于为后方切削刀片提供切削动力的同
时,为后方行走轮提供行走动力;
前方气动伸缩子结构位于前轮子结构和底板之间,用于将前轮子结构
连接到底板上,包括前方腕关节、前方...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:李福军
类型:发明
国别省市:河北;13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1