当前位置: 首页 > 专利查询>杨林专利>正文

一种高性能的飞行装置制造方法及图纸

技术编号:15059946 阅读:129 留言:0更新日期:2017-04-06 09:36
本发明专利技术公开了一种高性能的飞行装置,包括普通飞行器和安装在飞行器上的目标识别装置,识别装置包括建模模块、分段模块、合并模块和滤波模块。本发明专利技术通过在飞行器上加装目标识别装置,能够有效增强飞行器的环境适应能力,飞行装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。

【技术实现步骤摘要】

本专利技术涉及飞行器领域,具体涉及一种高性能的飞行装置
技术介绍
从古到今,人类对天空的探索就没有停止过,越来越多的飞行器被制造出来,随着社会和科学技术的进步,飞行器的应用对人们的生活的各个方面产生了巨大的影响。然而,飞行过程中由于不能对目标进行有效识别,不仅对飞行器的应用产生了限制,且极大提高了飞行过程中的危险性。目标轮廓识别作为目标识别的重要手段,由于实际应用中受到噪声、量化误差等因素的影响,目标轮廓不可避免地会产生失真,为了准确描述轮廓特征,目标轮廓的滤波平滑处理是十分必要的。目前,学者们提出了许多含噪轮廓的滤波平滑算法,但是普遍存在计算量庞大、降噪效果不理想、容易发生过度滤波导致目标失真等问题。
技术实现思路
针对上述问题,本专利技术提供一种高性能的飞行装置。本专利技术的目的采用以下技术方案来实现:一种高性能的飞行装置,包括普通飞行器和安装在飞行器上的目标识别装置,该飞行装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度宽度为D的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)否则,k′N(t)=k2N(t);由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK,当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0否则,特征函数f(t)=1。合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域;滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,为了提高抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。本专利技术通过在飞行器上加装目标识别装置,能够有效增强飞行器的环境适应能力,飞行装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。附图说明利用附图对本专利技术作进一步说明,但附图中的实施例不构成对本专利技术的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。图1是本专利技术的高性能的飞行装置的结构框图。具体实施方式结合以下实施例对本专利技术作进一步描述。图1是本专利技术的结构框图,其包括:建模模块、分段模块、合并模块、滤波模块。实施例1:一种高性能的飞行装置,包括普通飞行器和安装在飞行器上的目标识别装置,该飞行装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)本文档来自技高网...

【技术保护点】
一种高性能的飞行装置,包括普通飞行器和安装在飞行器上的目标识别装置,该飞行装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;其中,建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度为D的窗函数W(n),D∈{7,9},对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),T1=0.2,即:当|k1N(t)‑k2N(t)|>T1时,k′N(t)=k1N(t)否则,k′N(t)=k2N(t);由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK,当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0否则,特征函数f(t)=1。...

【技术特征摘要】
1.一种高性能的飞行装置,包括普通飞行器和安装在飞行器上的目标识别装置,该飞
行装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特
征是,包括建模模块、分段模块、合并模块和滤波模块;其中,
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化
方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓...

【专利技术属性】
技术研发人员:杨林
申请(专利权)人:杨林
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1