基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器及其制备方法技术

技术编号:14977011 阅读:155 留言:0更新日期:2017-04-03 10:09
本发明专利技术公开了一种基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器及其制备方法,通过静电纺丝与低温水热法结合制备的聚苯胺/二氧化钛复合纳米纤维。静电纺丝得到的纳米纤维结构与低温水热处理得到的二氧化钛纳米结构使得复合材料具有大的比表面积,提供更多的活性点与吸附气体分子作用,而且复合纳米材料中p型半导体聚苯胺与n型半导体二氧化钛形成大量的p-n结结构,加速气敏材料对于气体的响应,提高传感器对气体的响应灵敏度,回复性与稳定性。本发明专利技术无需对气敏材料进行分散与再次转移,实现聚苯胺/氧化钛复合纳米纤维与微电极的直接接触,减少接触电阻,提高传感器稳定性,工艺简便,成本低,反应温度较低,适合于批量生产。

【技术实现步骤摘要】

本专利技术涉及一种基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器及其制备方法,属于功能材料与传感器领域。
技术介绍
当前环境污染越来越严重,特别是雾霾导致的空气污染对人类健康与经济活动都带来了极大的危害。对于空气质量的检测与治理越来越受到人们的重视。气敏传感器是专门检测空气中气体种类与含量的器件,其核心为高质量的气敏材料。在气敏材料中,主要是半导体无机金属氧化物材料和有机导电聚合物两大类。金属氧化物多为具有宽能带的n型半导体材料,作为气敏材料时,具有高的响应灵敏度,良好的重复性,但一般要在高温条件下才能检测气体。有机导电聚合物气敏材料因其原料易得、制备工艺简单、独特的掺杂机理,可在室温下检测气体,但有机聚合物的长期稳定性较差,响应灵敏度低等缺陷也限制了其实际应用。随着材料合成技术的不断进步,原子层沉积法、热蒸发技术、电化学合成法、溶胶-凝胶法、自组装法、化学蒸汽沉积法等各种各样的方法用来制备有机导电聚合物/无机纳米复合气敏材料。纳米复合气敏材料独特的纳米结构有利于气体吸附,加速气敏传感器的响应,有机导电聚合物与无机纳米金属氧化物半导体之间的相互作用改善了传感器的性能。在这些合成方法中,多采用在无机纳米粒子存在的条件下引发导电聚合物的单体聚合,从而制备有机导电聚合物/无机纳米复合材料。这些制备方法较为繁杂,有机导电聚合物与无机纳米金属氧化物半导体的分散均匀性难以控制,而且都是先制备纳米复合材料,再构建器件,使得有机/无机纳米复合气敏材料与传感器的基底之间接触不均匀,在基底表面的分散性难以操控,最终导致气敏传感器性能受到很大影响。因此,研开高性能、低成本、小尺寸的气敏材料,研发具有高灵敏度又有室温响应特性的气敏传感器显得尤为重要。
技术实现思路
本专利技术为克服上述的不足之处,提供了一种具有高灵敏度又有室温响应特性的基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器及其制备方法。本专利技术解决上述技术问题采取以下的技术方案:基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器,其特征在于:包括基底、叉指型微电极和气敏材料,所述的基底是陶瓷、玻璃、硅片、聚对苯二甲酸乙二醇酯或聚四氟乙烯,在所述的基底表面沉积有叉指型微电极,叉指型微电极上连接有引线,气敏材料是聚苯胺/二氧化钛复合纳米纤维,沉积在表面有叉指型微电极的基底上。按上述方案,所述的基底表面沉积的叉指型微电极对数为5~20对,叉指微电极宽度为5~200μm,叉指微电极间隙为5~200μm。按上述方案,所述的聚苯胺/二氧化钛复合纳米纤维是通过静电纺丝与低温水热法结合而制备的,聚苯胺/二氧化钛复合纳米纤维气敏材料的厚度为60~500nm。所述基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器的制备方法,其特征在于包括以下步骤:1)将0.1-0.5g本征态聚苯胺,0.1-0.4g掺杂酸、0.1-0.5g聚苯乙烯溶于30mL三氯甲烷或二甲基甲酰胺中,得到溶液A;2)将0.1-0.5mL钛酸丁酯分散在5mL乙醇中,得到溶液B;3)将溶液A与溶液B搅拌混合均匀后,装入纺丝装置中,纺丝工作距离为8-20cm,开启高压电源,调节纺丝电压为5-20kV,接收时间为1-30min,将纺丝液通过静电纺丝的方法在接收基底表面沉积复合纳米纤维;4)将步骤3)所制得的沉积有复合纳米纤维的基底通过低温水热处理,得到基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器。按上述方案,所述的掺杂酸为樟脑磺酸、十二烷基苯磺酸或对甲苯磺酸。按上述方案,所述的低温水热处理温度为100-150℃,低温水热处理时间为6-18小时。与现有技术相比,本专利技术具有如下突出效果:1)本专利技术公开了一种可以在刚性基底或者柔性基底上构建气敏传感器的制备方法,该方法简单,无需复杂设备,反应温度较低,有利于柔性气敏传感器的开发和应用,适合于大规模生产。2)本专利技术的制备方法是在基底表面的叉指型微电极上直接得到纳米复合气敏材料,无需进行分散与再次转移,实现聚苯胺/二氧化钛复合纳米纤维与微电极的直接接触,有效提高器件的响应灵敏性与稳定性。3)本专利技术的气敏材料是聚苯胺/氧化钛复合纳米纤维,是通过静电纺丝与低温水热法结合制备的,静电纺丝得到的纳米纤维结构与低温水热处理得到的二氧化钛纳米结构使得复合材料具有大的比表面积,提供更多的活性点与吸附气体分子作用,而且复合纳米材料中p型半导体聚苯胺与n型半导体二氧化钛形成大量的p-n结结构,加速气敏材料对于气体的响应。具体实施方式为了更好的理解本专利技术,下面结合实施例进一步阐明本专利技术的内容,但本专利技术的内容不仅仅局限于下面的实施例。实施例1:1)将0.2g本征态聚苯胺,0.1g樟脑磺酸、0.2g聚苯乙烯溶于30mL三氯甲烷中,得到溶液A;2)将0.15mL钛酸丁酯溶于5mL乙醇中,得到溶液B;3)将溶液A与溶液B搅拌混合均匀后,装入纺丝装置中,纺丝工作距离为10cm,开启高压电源,调节纺丝电压为13kV,接收时间为20min,将纺丝液通过静电纺丝的方法在表面有叉指型微电极的陶瓷基底上沉积复合纳米纤维;4)将步骤3)所制得的沉积有复合纳米纤维的基底干燥后在130℃下水热处理15小时,得到基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器。所得气敏传感器对于氨气有较好的检测效果,在10ppm氨气浓度下,利用公式S=(R1-R0)/R0*100%,R1为通入氨气后的电阻值,R0为通入氨气前的电阻值),可算出灵敏度S=2400%,而且响应具有良好的重复性。实施例2:1)将0.15g本征态聚苯胺,0.2g十二烷基苯磺酸、0.15g聚苯乙烯溶于30mL二甲基甲酰胺中,得到溶液A;2)将0.15mL钛酸丁酯溶于5mL乙醇中,得到溶液B;3)将溶液A与溶液B搅拌混合均匀后,装入纺丝装置中,纺丝工作距离为15cm,开启高压电源,调节纺丝电压为15kV,接收时间为10min,将纺丝液通过静电纺丝的方法在表面有叉指型微电极的玻璃基底上沉积复合纳米纤维;4)将步骤3)所制得的沉积有复合纳米纤维的基底干燥后在110℃下水热处理18小时,得到基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器。所得气敏传感器对于氨气有较好的检测效果,在10ppm氨气浓度下,其灵敏度S=2500%,而且响应具有良好的重复性。实施例3:1)将0.3g本征态聚苯胺,0.3g对甲苯磺酸、0.3g聚苯乙烯溶于30mL三氯甲烷中,得到溶液A;2)将0.3mL钛酸丁酯溶于5mL乙醇中,得到溶液B;3)本文档来自技高网
...

【技术保护点】
基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器,其特征在于:包括基底、叉指型微电极和气敏材料,所述的基底是陶瓷、玻璃、硅片、聚对苯二甲酸乙二醇酯或聚四氟乙烯,在所述的基底表面沉积有叉指型微电极,叉指型微电极上连接有引线,气敏材料是聚苯胺/二氧化钛复合纳米纤维,沉积在表面有叉指型微电极的基底上。

【技术特征摘要】
1.基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器,其特征在于:包括基底、叉指型
微电极和气敏材料,所述的基底是陶瓷、玻璃、硅片、聚对苯二甲酸乙二醇酯或聚四氟乙烯,
在所述的基底表面沉积有叉指型微电极,叉指型微电极上连接有引线,气敏材料是聚苯胺/
二氧化钛复合纳米纤维,沉积在表面有叉指型微电极的基底上。
2.根据权利要求1所述的气敏传感器,其特征在于:所述的基底表面沉积的叉指型微
电极对数为5~20对,叉指微电极宽度为5~200μm,叉指微电极间隙为5~200m。
3.根据权利要求1所述的气敏传感器,其特征在于:所述的聚苯胺/二氧化钛复合纳米
纤维是通过静电纺丝与低温水热法结合而制备的,聚苯胺/二氧化钛复合纳米纤维气敏材料的
厚度为60~500nm。
4.权利要求1所述基于聚苯胺/二氧化钛复合纳米纤维的气敏传感器的制备方法,其特
征在于包括以下步骤:

【专利技术属性】
技术研发人员:李亮郑华明刘仿军刘玉兰
申请(专利权)人:武汉工程大学
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1