金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具技术

技术编号:14414882 阅读:143 留言:0更新日期:2017-01-12 02:55
本发明专利技术提供了金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具。其中,该方法包括:根据形成铸件的合金材料的结晶凝固温度范围,确定与结晶凝固温度范围相对应的无中子状态下的第一补缩角;根据形成铸件的合金材料的结晶凝固温度范围,确定与结晶凝固温度范围相对应的全中子状态下的第二补缩角;根据确定的第一补缩角和第二补缩角,计算第三补缩角;以及将中子上方的设计补缩角设定为大于等于第三补缩角并且小于第一补缩角。通过采用本发明专利技术的上述方法,能够有效地消除中子上方的缩松缩孔问题。

【技术实现步骤摘要】

本专利技术涉及金属型铸造领域,尤其涉及金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具
技术介绍
在金属型铸造中,竖向结构的中子经常被设计用来形成缸体铸件和筒体铸件。在竖向结构的中子的设计中,考虑到拔模的方便性,通常将竖向结构的中子设置在金属型铸造模具中的底部位置。但是,由于中子的散热能力较差,因此位于中子上方的铸件部分往往会形成缩松缩孔。为了解决中子上方的缩松缩孔的问题,可以在竖向结构的中子中设置冷却机构。但是,在竖向结构的中子中设置冷却机构,往往难度较大,而且费用也较高。因而,控制位于中子上方的铸件的顺序凝固的难度较大,并且经常会出现轴线缩孔缩松的问题。对于金属型铸造而言,通过合理地设计竖向结构的中子,充分发挥中子的散热作用,从而消除位于中子上方的铸件的缩孔缩松的缺陷,对于解决缸体铸件和筒体铸件等金属型铸件中的缩孔缩松的缺陷问题有重要意义。
技术实现思路
鉴于上述问题,本专利技术的目的在于提供了一种金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具。本专利技术的金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具能够有效地解决缸体铸件和筒体铸件等金属型铸件中的缩孔缩松的缺陷问题。根据本专利技术的一个方面,提供了一种金属型铸造模具中的竖向中子的设计方法,所述方法包括:根据形成铸件的合金材料的结晶凝固温度范围,从预先通过模拟得到的无中子状态下的第一对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述无中子状态下的第一补缩角,所述第一对应关系曲线是表示所述无中子状态下的所述结晶凝固温度范围和所述第一补缩角之间的对应关系的曲线;根据形成所述铸件的所述合金材料的所述结晶凝固温度范围,从预先通过模拟得到的全中子状态下的第二对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述全中子状态下的第二补缩角,所述第二对应关系曲线是表示所述全中子状态下的所述结晶凝固温度范围和所述第二补缩角之间的对应关系的曲线;根据确定的所述第一补缩角和所述第二补缩角,通过以下公式(1),计算第三补缩角:Y=A–Bx(1)其中,A表示所述第一补缩角,A–B表示所述第二补缩角,Y表示所述第三补缩角,x表示与所述中子的散热能力相关的系数,并且根据所述中子的体积以及接触所述中子侧面的所述铸件的体积,从预先通过模拟得到的第三对应关系曲线中,确定所述系数x;以及将所述金属型铸造模具中的所述中子上方的设计补缩角设定为大于等于所述第三补缩角并且小于所述第一补缩角。进一步地,所述方法进一步包括:对于各自具有不同的所述结晶凝固温度范围的各种合金材料,采用计算机辅助工程CAE软件,模拟所述无中子状态下的与每个所述结晶凝固温度范围相对应的所述第一补缩角,以获得所述无中子状态下的所述第一对应关系曲线。进一步地,所述方法进一步包括:对于各自具有不同的所述结晶凝固温度范围的各种合金材料,采用计算机辅助工程CAE软件,模拟所述全中子状态下的与每个所述结晶凝固温度范围相对应的所述第二补缩角,以获得所述全中子状态下的所述第二对应关系曲线。进一步地,所述系数x的大小取决于所述中子的体积与接触所述中子侧面的所述铸件的体积之比的大小,并且指示所述中子的体积与接触所述中子侧面的所述铸件的体积之比和所述系数x之间的对应关系的第三对应关系曲线预先通过采用计算机辅助工程CAE软件模拟得到。进一步地,所述金属型铸造模具为金属型重力铸造模具。通过采用本专利技术的属型铸造模具中的竖向中子的设计方法,能够在竖向中子的上方设计出合适的补缩角,从而能够有效地解决缸体铸件和筒体铸件等金属型铸件中的缩孔缩松的缺陷问题。根据本专利技术的另一个方面,提供了一种金属型铸造模具,所述金属型铸造模具包含采用本专利技术的方法设计的竖向中子。进一步地,所述金属型铸造模具为金属型重力铸造模具。通过采用本专利技术的金属型铸造模具,能够有效地解决缸体铸件和筒体铸件等金属型铸件中的缩孔缩松的缺陷问题。附图说明图1显示根据本专利技术的实施例的金属型铸造模具中的竖向中子的设计方法的流程图;图2显示根据本专利技术的实施例的补缩角和冒口补缩距离之间的关系的示意图;图3显示根据本专利技术的实施例的无中子状态下的第一补缩角的计算模型的示意图;图4显示根据本专利技术的实施例的全中子状态下的第二补缩角的计算模型的示意图;图5显示根据本专利技术的实施例的第一对应关系曲线和第二对应关系曲线的示意图;图6显示根据本专利技术的实施例的指示中子的体积与接触中子侧面的铸件的体积之比和系数x之间的对应关系的第三对应关系曲线的示意图;图7显示根据本专利技术的实施例的中子设计的第一实例的示意图;以及图8显示根据本专利技术的实施例的中子设计的第二实例的示意图。具体实施方式下面将参考附图描述根据本专利技术的各种实施例。图1显示根据本专利技术的实施例的金属型铸造模具中的竖向中子的设计方法的流程图。如图1所示,首先,在步骤S101,根据形成铸件的合金材料的结晶凝固温度范围,从预先通过模拟得到的无中子状态下的第一对应关系曲线中,确定与该结晶凝固温度范围相对应的无中子状态下的第一补缩角。第一对应关系曲线是表示无中子状态下的结晶凝固温度范围和第一补缩角之间的对应关系的曲线。接着,在步骤S102,根据形成铸件的合金材料的结晶凝固温度范围,从预先通过模拟得到的全中子状态下的第二对应关系曲线中,确定与该结晶凝固温度范围相对应的全中子状态下的第二补缩角。第二对应关系曲线是表示全中子状态下的结晶凝固温度范围和第二补缩角之间的对应关系的曲线。接着,在步骤S103,根据确定的第一补缩角和第二补缩角,通过以下公式(1),计算第三补缩角:Y=A–Bx(1)其中,A表示第一补缩角,A–B表示第二补缩角,Y表示第三补缩角,x表示与中子的散热能力相关的系数,并且根据中子的体积以及接触中子侧面的铸件的体积,从预先通过模拟得到的第三对应关系曲线中,确定系数x。接着,在步骤S104,将金属型铸造模具中的中子上方的设计补缩角设定为大于等于第三补缩角并且小于第一补缩角。本专利技术的金属型铸造模具中的竖向中子的设计方法适用于金属型重力铸造模具。图2显示根据本专利技术的实施例的补缩角和冒口补缩距离之间的关系的示意图。在本专利技术中,如图2的金属型铸造模具的剖面视图所示,补缩角为由冒口201的底面与铸件202的顶面相接触的边缘到中子203的顶面的几何中心的线所围成的锥体的角度。补缩角与冒口补缩距离L满足以下条件:补缩角=2arctg(D/2L),其中D表示铸件202的宽度,L表示从冒口201的底面到中子203的顶面之间的垂直距离,即为冒口补缩距离。第一补缩角A表示当金属型铸造模具处于无中子状态时,不产生缩松缩孔的最小的补缩角。第二补缩角A-B表示当金属型铸造模具处于全中子状态时,不产生缩松缩孔的最小的补缩角。第一补缩角A与不同的合金材料的结晶凝固温度范围之间的对应关系,以及第二补缩角A-B与不同的合金材料的结晶凝固温度范围之间的对应关系,可以预先通过采用现有的计算机辅助工程CAE软件进行模拟实验来获得。图3显示根据本专利技术的实施例的无中子状态下的第一补缩角A的计算模型的示意图。图4显示根据本专利技术的实施例的全中子状态下的第二补缩角的计算模型的示意图。图5显示根据本专利技术的实施例的第一对应关系曲线501和第二对应关系曲线502的示意图。在采用现有本文档来自技高网...
金属型铸造模具中的竖向中子的设计方法以及该金属型铸造模具

【技术保护点】
一种金属型铸造模具中的竖向中子的设计方法,其特征在于,所述方法包括:根据形成铸件的合金材料的结晶凝固温度范围,从预先通过模拟得到的无中子状态下的第一对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述无中子状态下的第一补缩角,所述第一对应关系曲线是表示所述无中子状态下的所述结晶凝固温度范围和所述第一补缩角之间的对应关系的曲线;根据形成所述铸件的所述合金材料的所述结晶凝固温度范围,从预先通过模拟得到的全中子状态下的第二对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述全中子状态下的第二补缩角,所述第二对应关系曲线是表示所述全中子状态下的所述结晶凝固温度范围和所述第二补缩角之间的对应关系的曲线;根据确定的所述第一补缩角和所述第二补缩角,通过以下公式(1),计算第三补缩角:Y=A–Bx   (1)其中,A表示所述第一补缩角,A–B表示所述第二补缩角,Y表示所述第三补缩角,x表示与所述中子的散热能力相关的系数,并且根据所述中子的体积以及接触所述中子侧面的所述铸件的体积,从预先通过模拟得到的第三对应关系曲线中,确定所述系数x;以及将所述金属型铸造模具中的所述中子上方的设计补缩角设定为大于等于所述第三补缩角并且小于所述第一补缩角。...

【技术特征摘要】
1.一种金属型铸造模具中的竖向中子的设计方法,其特征在于,所述方法包括:根据形成铸件的合金材料的结晶凝固温度范围,从预先通过模拟得到的无中子状态下的第一对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述无中子状态下的第一补缩角,所述第一对应关系曲线是表示所述无中子状态下的所述结晶凝固温度范围和所述第一补缩角之间的对应关系的曲线;根据形成所述铸件的所述合金材料的所述结晶凝固温度范围,从预先通过模拟得到的全中子状态下的第二对应关系曲线中,确定与所述结晶凝固温度范围相对应的所述全中子状态下的第二补缩角,所述第二对应关系曲线是表示所述全中子状态下的所述结晶凝固温度范围和所述第二补缩角之间的对应关系的曲线;根据确定的所述第一补缩角和所述第二补缩角,通过以下公式(1),计算第三补缩角:Y=A–Bx(1)其中,A表示所述第一补缩角,A–B表示所述第二补缩角,Y表示所述第三补缩角,x表示与所述中子的散热能力相关的系数,并且根据所述中子的体积以及接触所述中子侧面的所述铸件的体积,从预先通过模拟得到的第三对应关系曲线中,确定所述系数x;以及将所述金属型铸造模具中的所述中子上方的设计补缩角设定为大于等于所述第三补缩角并且小于所述第一补缩角。2.如权利要求1所述的方法,其特...

【专利技术属性】
技术研发人员:周文科朴胜焕
申请(专利权)人:株式会社日立制作所
类型:发明
国别省市:日本;JP

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1