基于变采样率的复杂电磁环境时域信号模拟方法技术

技术编号:14348603 阅读:111 留言:0更新日期:2017-01-04 19:21
本发明专利技术公开了一种基于变采样率的复杂电磁环境时域信号模拟方法,主要解决现有技术运算速度缓慢,造成电子设备无法正常工作的问题。其实现步骤是:1)确定雷达发射机、通信发射机的数量及参数;2)计算雷达发射机和通信发射机的发射信号采样频率,得到雷达发射机和通信发射机的发射信号总采样频率;3)计算雷达发射机和通信发射机的发射信号频谱;4)利用信号频谱计算观测点处雷达发射机和通信发射机的信号幅值、位移频谱;5)计算观测点处雷达发射机和通信发射机的叠加频谱;6)利用叠加频谱计算雷达发射机和通信发射机的发射信号时域模拟信号。本发明专利技术大幅度减小了运算量,提高了电子设备反应速度,可用于避免各种电磁设备相互干扰。

【技术实现步骤摘要】

本专利技术属于空间电磁态势感知
,特别涉及一种复杂电磁环境时域信号模拟方法,可用于分析电磁环境,避免各种电磁设备相互干扰。
技术介绍
随着信息化的发展,现实环境中的电磁设备越来越多,造成电磁环境异常复杂,如何通过变采样率获得复杂电磁环境的时域信号,对研究电磁环境具有重要价值:一是有助于避免各电磁设备间的相互干扰;二是可引导民航飞机在运动过程中避免强电磁干扰,以使自身安全起飞和降落。目前,传统的计算电磁数据的方法主要采用《获取空间电磁强度数据的方法》,该方法进行全采样,根据中心频率计算采样频率,并对观测点处所有的时域信号叠加,再对叠加信号进行频谱变换获得电磁数据。该方法需要在每个观测点处均进行一次运算量较大的频谱变换,在有大量观测点的情况下,运算速度缓慢,将造成电子设备无法正常工作或飞机无法及时躲避干扰的情况。
技术实现思路
本专利技术的目的在于针对上述已有技术的不足,提出一种基于变采样率的复杂电磁环境时域信号模拟方法,以大幅度减小运算量,提高电子设备反应速度,避免各种电磁设备的相互干扰。为实现上述目的,本专利技术的技术方案包括如下:(1)在空间放置M台雷达发射机和N台通信发射机,其中,每台雷达发射机的功率Prm和天线增益Grm均大于零,每台雷达发射机的发射信号为srm(t);每台通信发射机的功率Pcn和天线增益Gcn均大于零,每台通信发射机的发射信号为scn(t),其中,M≥1,N≥1,m表示雷达发射机序号,m=1,2,...,M,n表示通信发射机序号,n=1,2,...,N;(2)根据各雷达发射机的发射信号带宽Brm和各通信发射机的发射信号带宽Bcn,计算各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn;(3)根据各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn,计算雷达发射机的发射信号总采样频率Ωr和通信发射机的发射信号总采样频率Ωc;(4)根据各雷达发射机的发射信号为srm(t)和各通信发射机的发射信号为scn(t),分别计算各雷达发射机的发射信号频谱Srm(f)和各通信发射机的发射信号频谱Scn(f);(5)设置一个观测点,根据各雷达发射机的发射信号频谱Srm(f)和各通信发射机的发射信号频谱Scn(f),分别计算观测点处各雷达发射机的雷达信号幅值Arm、位移频谱S′rm(f)和各通信发射机的通信信号幅值Acn、位移频谱S′cn(f);(6)设置一个观测点,分别计算观测点处各雷达发射机的雷达信号叠加频谱Sr(f)和通信发射机的通信信号叠加频谱Sc(f):(6a)计算观测点处各雷达发射机的雷达信号叠加频谱Sr(f):(6a1)根据各雷达发射机的发射信号中心频率f0rm和带宽Brm,计算各雷达发射机的发射信号起始频率frmL和终止频率frmH:frmL=f0rm-Brm/2,frmH=f0rm+Brm/2;(6a2)取所有雷达发射机的发射信号起始频率中的最小值,终止频率中的最大值,得到雷达发射机的发射信号最低频率frL和最高频率frH:frL=min{frmL本文档来自技高网...
基于变采样率的复杂电磁环境时域信号模拟方法

【技术保护点】
一种基于变采样率的复杂电磁环境时域信号模拟方法,包括:(1)在空间放置M台雷达发射机和N台通信发射机,其中,每台雷达发射机的功率Prm和天线增益Grm均大于零,每台雷达发射机的发射信号为srm(t);每台通信发射机的功率Pcn和天线增益Gcn均大于零,每台通信发射机的发射信号为scn(t),其中,M≥1,N≥1,m表示雷达发射机序号,m=1,2,...,M,n表示通信发射机序号,n=1,2,...,N;(2)根据各雷达发射机的发射信号带宽Brm和各通信发射机的发射信号带宽Bcn,分别计算各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn;(3)根据各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn,分别计算雷达发射机的发射信号总采样频率Ωr和通信发射机的发射信号总采样频率Ωc;(4)根据各雷达发射机的发射信号为srm(t)和各通信发射机的发射信号为scn(t),分别计算各雷达发射机的发射信号频谱Srm(f)和各通信发射机的发射信号频谱Scn(f);(5)设置一个观测点,根据各雷达发射机的发射信号频谱Srm(f)和各通信发射机的发射信号频谱Scn(f),分别计算观测点处各雷达发射机的雷达信号幅值Arm、位移频谱S′rm(f)和各通信发射机的通信信号幅值Acn、位移频谱Sc′n(f);(6)设置一个观测点,分别计算观测点处各雷达发射机的雷达信号叠加频谱Sr(f)和通信发射机的通信信号叠加频谱Sc(f):(6a)计算观测点处各雷达发射机的雷达信号叠加频谱Sr(f):(6a1)根据各雷达发射机的发射信号中心频率f0rm和带宽Brm,计算各雷达发射机的发射信号起始频率frmL和终止频率frmH:frmL=f0rm‑Brm/2,frmH=f0rm+Brm/2;(6a2)取所有雷达发射机的发射信号起始频率中的最小值,终止频率中的最大值,得到雷达发射机的发射信号最低频率frL和最高频率frH:frL=min{frmL},frH=max{frmH};(6a3)以雷达发射机的发射信号频率作为x轴,观测点处雷达发射机的雷达信号位移频谱幅值S′rm(f)作为y轴构造雷达频率‐幅值谱,其中以雷达发射机的发射信号最低频率frL作为x轴的起点,最高频率frH作为x轴的终点,将各雷达发射机的雷达信号位移频谱Sr′m(f)按每个频点上的谱线幅值依次放入该雷达频率‐幅值谱中,将频点重叠部分的雷达发射机的雷达信号位移频谱幅值S′rm(f)进行叠加,得到观测点处的雷达发射机的雷达信号叠加频谱Sr(f);(6b)计算观测点处各通信发射机的通信信号叠加频谱Sc(f):(6b1)根据各通信发射机的发射信号中心频率f0cn和带宽Bcn,计算各通信发射机的发射信号起始频率fcnL和终止频率fcnH:fcnL=f0cn‑Bcn/2,fcnH=f0cn+Bcn/2;(6b2)取所有通信发射机的发射信号起始频率中的最小值,终止频率中的最大值,得到通信发射机的发射信号最低频率fcL和最高频率fcH:fcL=min{fcnL},fcH=max{fcnH};(6b3)以通信发射机的发射信号频率作为x轴,观测点处通信发射机的通信信号位移频谱幅值S′cn(f)作为y轴构造通信频率‐幅值谱,其中以通信发射机的发射信号最低频率fcL作为x轴的起点,最高频率fcH作为x轴的终点,将各通信发射机的通信信号位移频谱S′cn(f)按每个频点上的谱线幅值依次放入该通信频率‐幅值谱中,将频点重叠部分的通信发射机的通信信号位移频谱幅值S′cn(f)进行叠加,得到观测点处的通信发射机的通信信号叠加频谱Sc(f);(7)根据雷达发射机的发射信号总采样频率Ωr和通信发射机的发射信号总采样频率Ωc,对雷达发射机的雷达信号叠加频谱Sr(f)和通信发射机的通信信号叠加频谱Sc(f)进行傅里叶逆变换,得到雷达发射机的发射信号时域模拟信号sr(t)和通信发射机的发射信号时域模拟信号sc(t)。...

【技术特征摘要】
1.一种基于变采样率的复杂电磁环境时域信号模拟方法,包括:(1)在空间放置M台雷达发射机和N台通信发射机,其中,每台雷达发射机的功率Prm和天线增益Grm均大于零,每台雷达发射机的发射信号为srm(t);每台通信发射机的功率Pcn和天线增益Gcn均大于零,每台通信发射机的发射信号为scn(t),其中,M≥1,N≥1,m表示雷达发射机序号,m=1,2,...,M,n表示通信发射机序号,n=1,2,...,N;(2)根据各雷达发射机的发射信号带宽Brm和各通信发射机的发射信号带宽Bcn,分别计算各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn;(3)根据各雷达发射机的发射信号采样频率frm和各通信发射机的发射信号采样频率fcn,分别计算雷达发射机的发射信号总采样频率Ωr和通信发射机的发射信号总采样频率Ωc;(4)根据各雷达发射机的发射信号为srm(t)和各通信发射机的发射信号为scn(t),分别计算各雷达发射...

【专利技术属性】
技术研发人员:刘高高蔡晶晶赵晗希鲍丹武斌秦国栋李鹏
申请(专利权)人:西安电子科技大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1