光模块及其工作温度调节方法技术

技术编号:14274491 阅读:510 留言:0更新日期:2016-12-23 19:14
本发明专利技术公开了光模块及其工作温度调节方法,所述光模块包括:激光发射单元,其包括激光器以及驱动电路;所述激光器的消光比预先校准到特定的消光比范围内;MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,确定获取的温度值所对应的工作温度设定值;根据确定出的工作温度设定值,控制TEC控制电路调节激光器的工作温度为相应的温度。由于允许激光器的工作温度在一定范围内随环境温度相应变化,从而节约了加热或制冷的功耗;并且,预先将消光比校准到一个合适的范围,使得消光比在激光器的工作温度变化范围内仍可满足要求,而不必对BIAS电流进行补偿,更进一步节约了补偿功耗。

【技术实现步骤摘要】

本案为2013年05月24日提交的、申请号为201310196860.2、专利名称为应用于宽温度范围中的光模块及其工作温度调节方法的分案申请。本专利技术涉及光纤通信技术,尤其涉及一种应用于宽温度范围中的光模块及其工作温度调节方法。
技术介绍
近年来,随着增强型8.5G光纤通道和10G以太网高速光网络协议的快速发展,对超高速率光收发模块的需求日益增加,同时对模块端口密度以及功耗的要求也越来越高。10Gbit/s光收发模块在过去的几年里,经历了从300pin MSA、XENPAK(万兆以太网)、XPAK、X2、XFP光模块(万兆以太网光收发模块)到SFP光模块(千兆以太网光收发模块)+的转变。SFP+光模块作为SFP(small form-factor pluggables,小型可插拔)光模块的升级版本,符合IEEE 802.3AE/AQ和8G/10G光纤通道协议规范,与XFP相比模块尺寸减小40%,具有更高的端口密度和更低的功耗,传输距离也从300m增加到10km、40km和80km。现有技术中的SFP+光模块在长距离(例如40km和80km)传输时,需要采用损耗较小的窗口波长进行传输才能保证通信传输的接收灵敏度要求,一般采用1550nm单模光纤进行传输。同时直接调制会产生严重的激光啁啾现象,(激光器的偏置电流被信号调制,光频发生偏移和抖动)。啁啾效应会产生严重的失真。这种失真,随传输距离、传输带宽和频道数的增加而变得非常严重。综合以上因素,长距离SFP+通常采用1550nm的外调制激光器,例如使用较普遍的EML(Electroabsorption Modulated Laser,电吸收调制镭射)激光器。EML激光器的特性会随工作温度的变化发生较大的变化,使得光信号的功率、波长等参数发生很大的变化,眼图质量也变得很差;通过光纤传输之后的信号质量也会很差,误码率变大从而影响通信的质量和可靠性。通常情况下为保证光信号的质量,就需要保持EML激光器发射的激光的光功率和消光比恒定,激光的波长的变化不超过预定的范围;由此,需要保持EML激光器的工作温度的恒定。现有技术中,需要进行长距离传输的SFP+光模块如图1a所示,通常采用内置有TEC的激光器,如EML激光器。光模块中的TEC(Thermoelectric cooler,热电制冷器)控制电路用于保持激光器内的温度恒定,即保持激光器的工作温度恒定。具体地,激光器中还内置有热电偶,随着温度的改变,热电偶的阻值也会相应改变;TEC控制电路通过检测激光器内置的热电偶的阻值,闭环调节激光器内置的TEC进行加热或制冷,使得激光器内的温度保持恒定。然而,在70℃以上的高温环境或-5℃以下的低温环境中,如果采用上述的加热或制冷的方法使激光器内的温度保持恒定,则需要耗用较大的电流;由于需要耗用较大的电流,这对体积小、元件密度高的SFP+光模块的功耗和散热性能提出了难以实现的要求;下表1示出了不同温度环境下,对光模块所耗最大电流的限制:表1温度范围最大电流-5C~+70C(商业级)<450mA-40C~+85C(工业级)<570mA因此,采用上述保持激光器温度恒定技术的长距离SFP+光模块在更宽的温度范围工作时,例如工业级温度(-40℃~+85℃),70℃以上的高温环境或-5℃以下的低温环境中工作时,用来给EML TOSA进行加热和制冷的TEC电流超过光模块内部TEC功能电路的极限,导致TEC电路工作失效,EML TOSA工作温度不再维持目标温度不变,从而导致光模块工作失效,更甚情况下会损坏EML TOSA。为解决上述问题,公开号为102970080A的专利公开了一种光模块及其激光器工作温度的调节方法,该方法不再维持激光器的工作温度为恒定值,而是允许激光器的工作温度在一定范围内随环境温度相应地变化;同时,采用调节BIAS(偏置)电流作为补偿手段,进一步还可采用调节MOD(调制)电压,或EA(Electro-Absorption,电吸收)电压作为补偿手段,使得激光器发射的激光的光功率和消光比恒定。由于允许激光器的工作温度随环境温度有相应的改变,减小了激光器的工作温度与环境温度之间的差值;这样,即使在70℃以上的高温环境或-5℃以下的低温环境中,也不必为激光器内置的TEC提供过大的加热或制冷的电流,从而采用该项技术的长距离SFP+光模块可以应用于更宽的温度范围内。然而,在实际应用中,本专利技术的专利技术人发现,对BIAS电流或MOD电压进行补偿时,仍然会消耗一定的功耗;尤其是在高温环境中,为了对BIAS电流进行补偿,需要加大BIAS电流,这使得高温环境下因BIAS补偿电流而造成功耗增加,导致光模块壳体发热量较大、散热困难,出现器件因温度过高而失效的现象。因此,有必要提供一种功耗更低的光模块使之可以应用于更宽温度范围的环境中。
技术实现思路
本专利技术的实施例提供了一种应用于宽温度范围中的光模块及其工作温度调节方法,用以降低光模块的功耗使之可应用于更宽温度范围的环境中。根据本专利技术的一个方面,提供了一种应用于宽温度范围中的光模块,包括:激光发射单元,其包括激光器以及驱动电路;所述激光器的消光比预先校准到特定的消光比范围内;微程序控制器MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,根据预先存储的温度值与工作温度设定值之间的对应关系,确定获取的温度值所对应的工作温度设定值;根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度。根据本专利技术的另一个方面,提供了一种光模块的工作温度调节方法,包括:光模块中的MCU在获取温度传感器检测的温度值后,根据预先存储的温度值与工作温度设定值之间的对应关系,确定获取的温度值所对应的工作温度设定值;并根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度;其中,所述光模块中的激光器的消光比预先校准到特定的消光比范围内。本专利技术实施例的光模块不再维持激光器的工作温度为恒定值,而是允许激光器的工作温度在一定范围内随环境温度相应地变化,从而在一个更宽的温度范围内也不用消耗过大的加热或制冷的功耗;并且,预先将激光器的消光比校准到一个合适的范围,使得消光比在激光器的工作温度变化范围内仍可以满足协议要求,而不必对BIAS电流或MOD电压进行补偿。附图说明图1a为现有技术的光模块中的部分电路示意图;图1b为本专利技术实施例的光模块中的内部电路框图;图2为本专利技术实施例的激光器的内部电路示意图;图3为本专利技术实施例的TEC控制电路的内部电路框图;图4为本专利技术实施例的电压比较电路、标准电压输出电路的具体电路示意图。具体实施方式为使本专利技术的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本专利技术进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本专利技术的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本专利技术的这些方面。本申请使用的“模块”、“系统”等术语旨在包括与计算机相关的实体,例如但不限于硬件、固件、软硬件组合、软件或者执行中的软件。例如,模块可以是,但并不仅限于:处理器上运行的进程、处理器、对象、可执行程序、执行的线程、程序和\本文档来自技高网
...
光模块及其工作温度调节方法

【技术保护点】
一种光模块,包括:激光发射单元,其包括激光器以及驱动电路;所述激光器的消光比预先校准到特定的消光比范围内;微程序控制器MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,根据预先存储的温度值与工作温度设定值之间的对应关系,确定获取的温度值所对应的工作温度设定值;根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度。

【技术特征摘要】
1.一种光模块,包括:激光发射单元,其包括激光器以及驱动电路;所述激光器的消光比预先校准到特定的消光比范围内;微程序控制器MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,根据预先存储的温度值与工作温度设定值之间的对应关系,确定获取的温度值所对应的工作温度设定值;根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度。2.如权利要求1所...

【专利技术属性】
技术研发人员:王斌赵平吴锡贵张华
申请(专利权)人:青岛海信宽带多媒体技术有限公司
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1