电机制动控制电路制造技术

技术编号:14112846 阅读:97 留言:0更新日期:2016-12-07 08:59
本发明专利技术提出的一种电机制动控制电路,包括电源输入端子CN1、弹簧加压制动器的制动器线圈接口端子CN3、控制信号接口端子CN2、整流限流电路、控制电源电路、初始通电启动电路、隔离光耦PC2、定压开关电路、开关管Q2;整流限流电路对交流电进行整流限流后,一路通过CN3接入制动器线圈;另一路接入控制电源电路后,经PC2接入Q2的控制端;定压开关电路并联在CN3,隔离光耦的控制端连接在CN2;初始通电启动电路的输出端与整流限流电路的输出端相连接,用于提供制动器释放初期工作电能,并延时后断开。本发明专利技术以简单的电路设计实现了制动器的大电流启动释放,小电流维持释放,节省了能源,并且实现了电机的快速制动。

【技术实现步骤摘要】

本专利技术涉及电机控制
,特别是涉及一种电机制动控制电路
技术介绍
实际应用中多数电机制动采用弹簧加压制动器,制动器的控制器不是通用设备,比较难购买。直接给制动器线圈加直流电释放,维持制动器释放电流降不下来,线圈热、能耗高。用可控硅调导通角控制初始释放/维持释放电流,由于控制是电感负载,电流是脉动直流,可控硅不截止几率加大。更重要是很难实现从制动信号给出到弹簧压紧时间小于50mS,不能满足精密机床,机器人等行业电机控制要求。因此有必要研制易实现、价格低廉、节能、动作时间短、安全可靠的电机制动控制器。
技术实现思路
为了解决上述技术问题,本专利技术提出了一种电机制动控制电路,以简单的电路设计实现了大电流启动释放,小电流维持制动器释放,节省了能源,并且实现了电机的快速制动。本专利技术提出的一种电机制动控制电路,包括电源输入端子CN1、弹簧加压制动器的制动器线圈接口端子CN3、控制信号接口端子CN2,还包括整流限流电路、控制电源电路、初始通电启动电路、隔离光耦PC2、定压开关电路、开关管Q2;控制电源电路用于为开关管Q2提供控制电压;整流限流电路对交流电进行整流限流,然后分为两路;一路通过制动器线圈接口CN3接入制动器线圈,用于开关管Q2接通时维持弹簧加压制动器释放所需电流;另一路接入控制电源电路降压、稳压后,经隔离光耦PC2接入开关管Q2的控制端;开关管Q2通过制动器线圈接口CN3连接制动器线圈,用于控制制动器线圈的通断电;定压开关电路通过制动器线圈接口CN3与制动器线圈并联;隔离光耦PC2的控制端连接在控制信号接口端子CN2;初始通电启动电路与整流限流电路并联设置,用于提供弹簧加压制动器释放初期工作电能,并延时后断开;定压开关电路用于在开关管Q2断开瞬间,制动器线圈产生反峰电压大于定压开关电路的导通电压时,定压开关电路导通;控制信号接口端子CN2接入控制信号后,隔离光耦PC2瞬时导通,控制开关管Q2导通,由初始通电启动电路提供弹簧加压制动器动作初期释放电流,保证制动器释放初期对电能需求,经过延时后初始通电启动电路的输出断开,由整流限流电路继续维持弹簧加压制动器释放所需电能,制动器维持非制动状态;控制信号接口端子CN2的接入信号断开时,隔离光耦PC2输出端瞬时断开,开关管Q2随即瞬时断开,开关管Q2断开瞬间制动器线圈产生反峰电压,当所述反峰电压达到定压开关电路的导通电压时定压开关电路导通,此时制动器线圈两端电压高、线圈电流小,电磁吸力远小于弹簧弹力,制动器对电机快速制动。优选的,所述的定压开关电路为串联设置且阳极互相连接的稳压二极管ZD3和二极管D3,其中二极管D3的阴极连接整流限流电路输出端,稳压二极管ZD3的阴极连接开关管Q2。优选的,所述的整流限流电路包括二极管D1、二极管D2、限流电阻R1;二极管D1与二极管D2的阳极分别与交流电相连接,其阴极相互连接后与限流电阻R1串联。优选的,所述的初始通电启动电路包括整流电路和延时控制电路;延时控制电路由隔离光耦PC1、电容C2、稳压二极管ZD1、二极管D4、电阻R6、电阻R7构成;其中电阻R7两端分别连接控制信号接口端子CN2两个端口,电阻R7的一端通过二极管D4和电阻R6的并联电路连接隔离光耦PC1控制端的输入口,电阻R7的另一端通过稳压二极管ZD1连接隔离光耦PC1控制端的输出口,二极管D4的阴极和稳压二极管ZD1的阳极分别连接电阻R7的两端,二极管D4的阳极和稳压二极管ZD1的阳极分别连接电容C2的正极和负极;整流电路包括可控硅Q1、电容C1、电阻R2、电阻R3、电阻R4;其中可控硅Q1的阳极和阴极分别连接交流电和隔离光耦PC1执行端的输出口,电容C1和电阻R4构成的串联阻容电路的两端分别连接可控硅Q1的阳极和隔离光耦PC1执行端的输入口,电阻R3的两端分别连接可控硅Q1的控制极和可控硅Q1的阴极,电阻R2的两端分别连接可控硅Q1的控制极和隔离光耦PC1执行端的输出口。优选的,所述的初始通电启动电路由二极管和电容的串联电路构成,初始通电启动电路的输入端与输出端分别与整流限流电路的输入端和输出端相连接。优选的,所述的初始通电启动电路包括与限流电阻R1并联的电容,该电容与二极管D1共同实现初始通电启动电路的延时断开功能。优选的,所述的控制电源电路包括电容C3、稳压二极管ZD2、电阻R8、电阻R9;其中电容C3和电阻R8串联电路与二极管D1并联,电容C3负极连接二极管D1的阳极,稳压二极管ZD2与电容C3并联,稳压二极管ZD2的阳极连接电容C3的负极,稳压二极管ZD2的阴极通过电阻R9连接隔离光耦PC2的执行端。优选的,所述稳压二极管ZD3的稳定电压为150V~240V。优选的,所述限流电阻R1的电阻值为1KΩ。优选的,稳压二极管ZD2的稳定电压为15V,稳压二极管ZD1的稳定电压为3.6V。本专利技术的技术效果包括以下几个方面:(1)一个可控硅和周围控制器件组成延时断开电路,提供弹簧加压制动器释放初期对电能的需求。(2)制动器线圈维持释放有电阻限流,电能消耗不到直通时20%,同时降低制动器线圈运行时两端电压,不到直通时的1/4。这样低的运行电压使得线圈快速断电时产生反峰电压也同倍率降低,断电更安全。(3)控制信号经过光耦隔离后控制开关管,既安全可靠又缩短延迟时间。(4)开关管截止瞬间,制动器线圈产生反峰电压,高于定压开关电路稳压管稳压值时,稳压管导通续流,由于电压高电流小,制动器线圈不能维持释放靠弹簧力动作,断电动作时间短,实测从断开控制信号到制动器弹簧压紧时间小于22Sm。附图说明图1为实施例一电机制动控制电路的示意图;图2为实施例二电机制动控制电路的示意图。具体实施方式下面参照附图来描述本专利技术的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本专利技术的技术原理,并非旨在限制本专利技术的保护范围。实施例一如图1所示,本实施例提出的一种电机制动控制电路包括电源输入端子CN1、弹簧加压制动器的制动器线圈接口端子CN3、控制信号接口端子CN2,其特征在于,包括整流限流电路、控制电源电路、初始通电启动电路、隔离光耦PC2、定压开关电路、开关管Q2。整流限流电路用于将交流电转换为直流电并通过限流电阻实现电流的限流;整流限流电路包括二极管D1、二极管D2、限流电阻R1;二极管D1与二极管D2的阳极分别与交流电相连接,其阴极相互连接后与限流电阻R1串联。整流限流电路对交流电进行整流限流,然后分为两路;一路通过制动器线圈接口CN3接入制动器线圈,用于开关管Q2接通时维持弹簧加压制动器释放所需电流;另一路接入控制电源电路降压、稳压后,经隔离光耦PC2接入开关管Q2的控制端;开关管Q2通过制动器线圈接口CN3连接制动器线圈,用于控制制动器线圈的通断电;定压开关电路通过制动器线圈接口CN3与制动器线圈并联;隔离光耦PC2的控制端连接在控制信号接口端子CN2。控制电源电路用于为开关管Q2提供控制电压;控制电源电路包括电容C3、稳压二极管ZD2、电阻R8、电阻R9;其中电容C3和电阻R8串联电路与二极管D1并联,电容C3负极连接二极管D1的阳极,稳压二极管ZD2与电容C3并联,稳压二极管ZD2的阳极连接电容C3的负极,稳压二极管ZD2的阴极通过电阻R9连接隔本文档来自技高网...
电机制动控制电路

【技术保护点】
一种电机制动控制电路,包括电源输入端子CN1、弹簧加压制动器的制动器线圈接口端子CN3、控制信号接口端子CN2,其特征在于,包括整流限流电路、控制电源电路、初始通电启动电路、隔离光耦PC2、定压开关电路、开关管Q2;控制电源电路用于为开关管Q2提供控制电压;整流限流电路对交流电进行整流限流,然后分为两路;一路通过制动器线圈接口CN3接入制动器线圈,用于开关管Q2接通时维持弹簧加压制动器释放所需电流;另一路接入控制电源电路降压、稳压后,经隔离光耦PC2接入开关管Q2的控制端;开关管Q2通过制动器线圈接口CN3连接制动器线圈,用于控制制动器线圈的通断电;定压开关电路通过制动器线圈接口CN3与制动器线圈并联;隔离光耦PC2的控制端与控制信号接口端子CN2连接;初始通电启动电路与整流限流电路并联设置,用于提供弹簧加压制动器释放初期工作电能,并延时后断开;定压开关电路用于在开关管Q2断开瞬间,制动器线圈产生反峰电压大于定压开关电路的导通电压时,定压开关电路导通;控制信号接口端子CN2接入控制信号后,隔离光耦PC2瞬时导通,控制开关管Q2导通,由初始通电启动电路提供弹簧加压制动器动作初期释放电流,保证弹簧加压制动器释放初期对电能需求,经过延时后初始通电启动电路的输出断开,由整流限流电路维持弹簧加压制动器释放过程所需电能,弹簧加压制动器继续维持在非制动状态;控制信号接口端子CN2的接入信号断开时,隔离光耦PC2输出端瞬时断开,开关管Q2随即瞬时断开,开关管Q2断开瞬间制动器线圈产生反峰电压,当所述反峰电压达到定压开关电路的导通电压时定压开关电路导通,此时制动器线圈两端电压高、线圈电流小,电磁吸力远小于弹簧弹力,制动器对电机快速制动。...

【技术特征摘要】
1.一种电机制动控制电路,包括电源输入端子CN1、弹簧加压制动器的制动器线圈接口端子CN3、控制信号接口端子CN2,其特征在于,包括整流限流电路、控制电源电路、初始通电启动电路、隔离光耦PC2、定压开关电路、开关管Q2;控制电源电路用于为开关管Q2提供控制电压;整流限流电路对交流电进行整流限流,然后分为两路;一路通过制动器线圈接口CN3接入制动器线圈,用于开关管Q2接通时维持弹簧加压制动器释放所需电流;另一路接入控制电源电路降压、稳压后,经隔离光耦PC2接入开关管Q2的控制端;开关管Q2通过制动器线圈接口CN3连接制动器线圈,用于控制制动器线圈的通断电;定压开关电路通过制动器线圈接口CN3与制动器线圈并联;隔离光耦PC2的控制端与控制信号接口端子CN2连接;初始通电启动电路与整流限流电路并联设置,用于提供弹簧加压制动器释放初期工作电能,并延时后断开;定压开关电路用于在开关管Q2断开瞬间,制动器线圈产生反峰电压大于定压开关电路的导通电压时,定压开关电路导通;控制信号接口端子CN2接入控制信号后,隔离光耦PC2瞬时导通,控制开关管Q2导通,由初始通电启动电路提供弹簧加压制动器动作初期释放电流,保证弹簧加压制动器释放初期对电能需求,经过延时后初始通电启动电路的输出断开,由整流限流电路维持弹簧加压制动器释放过程所需电能,弹簧加压制动器继续维持在非制动状态;控制信号接口端子CN2的接入信号断开时,隔离光耦PC2输出端瞬时断开,开关管Q2随即瞬时断开,开关管Q2断开瞬间制动器线圈产生反峰电压,当所述反峰电压达到定压开关电路的导通电压时定压开关电路导通,此时制动器线圈两端电压高、线圈电流小,电磁吸力远小于弹簧弹力,制动器对电机快速制动。2.如权利要求1所述的控制电路,其特征在于,所述的定压开关电路为串联设置且阳极互相连接的稳压二极管ZD3和二极管D3,其中二极管D3的阴极连接整流限流电路输出端,稳压二极管ZD3的阴极连接开关管Q2。3.如权利要求2所述的控制电路,其特征在于,所述的整流限流电路包括二极管D1、二极管D2、限流电阻R1;二极管D1与二极管D2的阳极分别与交流电相连接,其阴极相互连接后与限流电阻R1串联。4.如权利要...

【专利技术属性】
技术研发人员:项久鹏李伯钧
申请(专利权)人:北京超同步伺服股份有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1