光学传感器制造技术

技术编号:13890893 阅读:83 留言:0更新日期:2016-10-24 09:22
描述一种基于生成在非零被测对象场存在的情况下在传感器(10)的感测元件(131,134)中具有不同速度的光波的两个集合来增加光学传感器(10)的精度的方法。在光波的所述两个集合之间引入所定义静态偏置相移。传感器(10)将包括静态偏置光学相移和被测对象感应光学相移的总光学相移转换为至少两个检测器通道(142,143)中的反相光功率变化。该方法包括在所述光功率变化转换为所述两个检测器通道(142,143)中的电检测器信号之后归一化光功率变化以降低光源(111)的不均匀强度或功率和检测器通道中的不同损耗或增益的影响的步骤。还提供用于对这类光学传感器和新传感器进行温度稳定的其他方法、传感器和设备。

【技术实现步骤摘要】
【国外来华专利技术】
本公开涉及在被测对象场存在的情况下引起经过它的光波的相移、具有感测元件的光学传感器,例如光纤电流传感器(FOCS)或磁场传感器,其包括要暴露于例如待测量电流的磁场的感测光纤,如通常用于高电压或高电流应用中的。
技术介绍
光纤电流传感器依靠盘绕电流导体的光纤中的磁光法拉第效应。电流感应磁场在光纤中生成与所施加磁场成比例的圆双折射。一种优选布置采用在感测光纤的远端的反射器,使得耦合到光纤中的光执行光纤线圈中的往返。通常,左和右圆偏振光波被注入感测光纤中,其由接合到感测光纤并且充当四分之一波延迟器(QWR)的光纤相位延迟器从两个正交线偏振光波来生成,如参考文献[1]所述。在经过光纤线圈的往返之后,两个圆形波因光纤中的圆双折射而累积了与所施加电流成比例的相对相位延迟。这个相位延迟与围绕电流导体的光纤绕组的数量、所施加电流和光纤的维尔德常数V(T, λ)成比例:维尔德常数是材料、温度和波长相关的。作为备选方案,传感器可设计为具有在感测光纤两端的四分之一波延迟器(QWR)以及在感测光纤中反向传播的圆偏振的相同意义的光波的萨格纳克类型干涉计(参见参考文献[1])。还已知的是基于普克尔斯效应(线性光电效应)[21]或者基于耦合到压电材料的光纤的使用[16、7]的电压或电场传感器。在这些传感器中,通过电场或者力或材料的折射率的各向异性变化所引起的双折射在光纤传感器中用来测量电压或电场强度。高性能电流传感器常常使用基于如也在光纤陀螺仪中应用的非交互相位调制的干涉测定技术,以便测量光学相移,参见例如参考文献[2]。采用集成光学相位调制器或压电调制器。该技术具体结合闭环检测来提供优于磁光相移的大范围的高精度、良好比例因子稳定性和线性响应。另一方面,该技术比较复杂,并且常常要求偏振保持(PM)光纤组件和精细信号处理。此外,集成光学调制器是比较昂贵的组件。相反,更简单的检测方案采用无源光学组件、例如波板和偏振器,其将磁光相移转换为发射光功率的变化(如参考文献[3]中所述)。为了使传感器输出与例如光源功率的变化无关,这类传感器常常与至少两个检测通道配合工作。两个通道中的光功率响应待测量电流而以相反相位(反相)改变。大体上,两个信号的差除以其总和与电流成比例,并且与源功率无关。但是,两个通道中的不对称性(例如不同的光学损耗、应力的影响以及它们随时间和温度的变化)限制这种类型的传感器的可取得精度。虽然传感器精度对于高压变电站中的保护功能可以是充分的(IEC精度5P类要求在额定电流下的±1%之内的精度),但是精度通常对于电力计量是不充分的;IEC计量0.2类例如要求在额定电流下的0.2%之内的精度。因此,本专利技术的一个目的是提供上述种类的光学传感器(例如磁场传感器或光纤电流传感器(FOCS))以及相关方法,其甚至在使用无源光学组件代替有源相位调制组件来检测光波之间的相对相移时也增加这类传感器的精度。
技术实现思路
按照本专利技术的第一方面,提供一种基于生成在非零被测对象场存在的情况下在传感器的感测元件中具有不同速度的光波的两个集合来增加光学传感器的精度的方法,并且其中所定义静态偏置相移在光波的两个集合之间来引入,传感器将包括静态偏置光学相移和所述被测对象场所引入的光学相移的总光学相移转换为至少两个检测器通道中的相反符号(反相)的光功率变化,其中该方法包括在光功率变化被转换为两个检测器通道中的电检测器信号之后对其归一化以降低检测器通道中的不均匀强度和不同损耗或增益的影响的步骤。光波的两个集合通常是正交线偏振光波或者左和右圆偏振光波。优选地,将两种集合之间的相移转换为两个检测器通道中具有相反符号(即,处于反相)的光功率的变化。由于在光波的两个集合之间引入静态偏置光学相移,所以所应用的检测是无源检测,并且因而不要求有源光学相位调制。静态偏置光学相移通常为大约(2n + 1) × 90°,具体在(2n + 1) × 90° ± 20°或(2n + 1) × 90 ± 5°之内,其中n为任何整数。静态偏置光学相移能够例如通过使用至少一个四分之一波延迟器或法拉第旋转器来引入。对于电流或磁场测量,感测元件能够是光纤元件、块状磁光材料(例如钇铁石榴石晶体或熔融石英玻璃)或者附连到磁致伸缩元件的光纤或块状光学材料。对于电压或电场测量,感测元件能够是光电晶体[21]、结晶光电光纤[19]、极化光纤[20]或者附连到压电材料的光纤[7]。通过从检测通道的电检测器信号中过滤谱分量,并且将谱分量或者从其中得出的至少一个归一化因子与至少一个检测器信号相结合,来得出光功率变化的归一化,以产生归一化检测器信号。谱分量能够是经过滤的AC分量和/或检测器信号的至少一个的瞬变分量和/或检测器信号的至少一个的经(低通)滤波的分量或DC分量。按照本专利技术的方法能够用于测量DC、AC或瞬变被测对象场。谱分量可经过时间平均以用于噪声降低。AC谱分量优选地在被测对象场的标称频率周围的范围中,例如对于标准电力网频率在45 Hz至65 Hz的范围中。如果AC和瞬变谱分量的幅度下降到低于阈值,则它们能够通过缺省值或者通过经低通滤波的信号分量来替代。在测量AC或瞬变场的情况下,归一化之后的组合传感器信号优选地经过高通滤波。按照本专利技术的第二方面(其可以或者可以不与如上所述的第一方面或者与以下所述的第三方面相结合),对于AC或瞬变场测量,引入静态偏置光学相移的(无源)光学元件的温度从传感器信号的低频或DC分量来得出。DC或低频分量取决于静态偏置光学相移。偏置相移能够随着引入相移的光学组件的温度发生变化而变化,并且因而能够指示组件的温度。换言之,信号的DC或低频分量能够用作在引入静态偏置光学相移的位置(例如适当的集成光学偏振分路器模块,其能够用于这个目的)处的温度的量度。通过知道这种温度,能够相应地校正AC或瞬变传感器信号。这个温度补偿能够与其他温度补偿、具体来说与感测元件本身的温度补偿结合应用。上述方面和所需步骤能够实现为传感器的信号处理单元的部分或者由其来运行。按照本专利技术的第三方面(其可以或者可以不与如上所述方面相结合),传感器至少包括:光源和至少一个光检测器、优选地至少两个光检测器;以及至少两个、优选地至少三个光学传输通道,其中一个通道提供光到感测元件的前向通道,以及一个或两个通道提供光到检测器的返回检测器通道;一个或多个无源光学元件,用于引入在非零被测对象场存在的情况下在所述感测元件中具有不同速度的光波的两个不同集合之间的静态偏置光学相移,并且用于将包括静态偏置光学相移和被测对象场所引起的光学相移的总光学相移转换为至少两个检测器通道中的相反符号(反相)的光功率变化;以及偏振保持(PM)光纤,其中PM光纤直接地或者经由至少一个延迟器或法拉第旋转器元件间接地连接到感测元件,一个或多个无源光学元件的至少部分与温度稳定单元进行热接触,从而为一个或多个无源光学元件提供受控温度环境。这种单元能够包括例如至少一个半调节加热电阻器、具体来说是至少一个自调节加热电阻器箔。在本专利技术的这个方面的优选实施例中,一个或多个无源光学元件的至少部分处于地电位,以及PM光纤提供从地电位到感测元件的电位的光学连接,其中后一电位与地电位是不同的,并且通常是中压或高压。在这种情况下,有利的是经过绝缘子柱(insulat本文档来自技高网
...

【技术保护点】
一种检测感测元件(131,134)中的被测对象场所引起的光波的两个集合之间的光学相移的方法,所述方法包括下列步骤:‑ 经过所述感测元件(131,134)从光源(111)传递在非零被测对象场存在的情况下在所述感测元件(131,134)中具有不同速度的光波的所述两个集合;‑ 引入光波的所述两个集合之间的静态偏置光学相移;‑ 将包括所述静态偏置光学相移和所述被测对象场所引起的所述光学相移的总光学相移转换为至少两个检测器通道(142,143)中的相反符号(反相)的光功率变化;‑ 将所述至少两个检测器通道(142,143)中的所述光功率转换为电检测器信号;‑ 从所述至少两个检测通道(142,143)的所述电检测器信号中过滤谱分量,并且将所述谱分量或者从其中得出的归一化参数与至少一个检测器信号相结合,以产生与所述被测对象场不存在的情况下的相等光平均功率对应的归一化检测器信号;‑ 组合包括所述归一化检测器信号的所述至少两个检测通道的所述检测器信号,以产生与所述总光学相移相关但是与所述光源的强度和所述至少两个检测器通道(142,143)中的不同损耗或不同增益基本上无关的传感器信号。

【技术特征摘要】
【国外来华专利技术】1.一种检测感测元件(131,134)中的被测对象场所引起的光波的两个集合之间的光学相移的方法,所述方法包括下列步骤:- 经过所述感测元件(131,134)从光源(111)传递在非零被测对象场存在的情况下在所述感测元件(131,134)中具有不同速度的光波的所述两个集合;- 引入光波的所述两个集合之间的静态偏置光学相移;- 将包括所述静态偏置光学相移和所述被测对象场所引起的所述光学相移的总光学相移转换为至少两个检测器通道(142,143)中的相反符号(反相)的光功率变化;- 将所述至少两个检测器通道(142,143)中的所述光功率转换为电检测器信号;- 从所述至少两个检测通道(142,143)的所述电检测器信号中过滤谱分量,并且将所述谱分量或者从其中得出的归一化参数与至少一个检测器信号相结合,以产生与所述被测对象场不存在的情况下的相等光平均功率对应的归一化检测器信号;- 组合包括所述归一化检测器信号的所述至少两个检测通道的所述检测器信号,以产生与所述总光学相移相关但是与所述光源的强度和所述至少两个检测器通道(142,143)中的不同损耗或不同增益基本上无关的传感器信号。2.如权利要求1所述的方法,其中,光波的所述两个集合包括两个不同偏振状态、具体来说是两个正交线偏振状态或者左和右圆偏振状态。3. 如权利要求1或2所述的方法,其中,所述静态偏置光学相移为大约(2n + 1) × 90°,具体在(2n + 1) × 90° ± 20°或(2n + 1) × 90 ± 5°之内,其中n为任何整数。4.如以上权利要求中的任一项所述的方法,其中,所述静态偏置光学相移使用至少一个四分之一波延迟器(144)或法拉第旋转器(144')来引入。5.如以上权利要求中的任一项所述的方法,其中,所述感测元件是电流或磁场感测元件(131)或者电压或电场感测元件(134)。6.如权利要求5所述的方法,其中,所述电流感测元件(131)是环绕电流导体(15)的光纤(131)。7.如权利要求5所述的方法,其中,所述电场或电压感测元件(134)是光电晶体(134)或者结晶或极化光电光纤(134)。8.如以上权利要求中的任一项所述的方法,其中,一个或多个偏振元件(141,145,16)用来生成具有相反符号(反相)的所述光功率变化。9.如以上权利要求中的任一项所述的方法,其中,所述经过滤的谱分量是所述检测器信号的AC或瞬变内容。10.如权利要求9所述的方法,其中,所述经过滤的AC谱分量经过时间平均。11.如权利要求10所述的方法,其中,快速傅立叶变换(FFT)和低通滤波器(LPF,LPF1)用来过滤时间平均的AC谱分量。12.如权利要求10至11中的任一项所述的方法,其中,一系列高通滤波器(HPF1)、整流器(R)和低通滤波器(LPF)用来过滤时间平均的AC谱分量。13. 如以上权利要求中的任一项所述的方法,其中,所述经过滤的谱分量处于所述被测对象场的标称频率周围的范围中,具体来说在45 Hz至65 Hz的范围中。14.如以上权利要求中的任一项所述的方法,其中,设置所述经过滤的谱分量的幅度阈值,以及低于所述阈值或者从其中所得出的归一化参数的经过滤的谱分量通过缺省值或者通过经低通滤波的信号分量来替代。15.如权利要求1至8中的任一项所述的方法,其中,所述经过滤的谱分量是经过所述检测器信号的低通滤波所得出的所述所检测信号的DC或缓慢变化内容。16.如以上权利要求中的任一项所述的方法,还包括在所述组合步骤之后向所述信号应用高通滤波器(HPF,HPF2)的步骤。17.如以上权利要求中的任一项所述的方法,还包括补偿所述感测元件和/或其他无源组件(14,16,141,144,144',145)的温度相关性的步骤。18.如以上权利要求中的任一项所述的方法,还包括具体通过考虑所述静态光学偏置相移对所述传感器信号特性的线性化。19.具体如以上权利要求中的任一项所述的方法,还包括从所述传感器信号来得出表示所述静态偏置相移的其他信号的步骤。20.如权利要求19所述的方法,其中,得出表示所述静态光学相位偏置的信号的所述步骤包括将所述传感器信号分为总相移通道和静态偏置相移通道,并且向所述静态偏置相移通道应用低通滤波器(LPF2)。21.如权利要求19或20所述的方法,其中,所述静态偏置相移指示引入所述静态偏置光学相移的组件(14,144,144...

【专利技术属性】
技术研发人员:K博内特A弗兰克G米勒杨琳
申请(专利权)人:ABB技术有限公司
类型:发明
国别省市:瑞士;CH

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1