冷却富烃馏分的方法技术

技术编号:12951665 阅读:97 留言:0更新日期:2016-03-02 12:00
本发明专利技术描述一种与制冷剂回路的方向相反冷却富烃馏分,特别是天然气的方法。在该方法中,将压缩的制冷剂分成三个制冷剂支流(4,8,10)。而第一支流(4)在温膨胀器(X1)中做功膨胀,第二支流(8)在冷膨胀器(X2)中做功膨胀,第三支流(10)在最低温度水平下做功膨胀(V1)。从而结果是冷膨胀器的运行点以这样的方式变化,使得两个膨胀器(X1,X2)的制冷功效在40/60至60/40之间的比例中。

【技术实现步骤摘要】
【专利说明】本专利技术涉及冷却富烃馏分,特别是天然气的方法。为了液化富烃气体馏分特别是天然气,在所采用的方法中,利用气体的做功膨胀(work-producing expans1n)产生制冷。为了增大热力学效率从而降低单位能量消耗,可以使用多于一个的膨胀涡轮。被称作“多膨胀器方法”的共同特征是各自供应仅仅通过由做功膨胀冷却的气流的显热的最大制冷(最低制冷剂温度),以及通过使用至少一个另外的膨胀涡轮在较低温度水平下供应全部所需制冷功效的主要部分。这种膨胀器方法已经被例如美国专利5768912以及美国专利6412302公开,美国专利5768912公开了所谓双N2的膨胀器方法,美国专利6412302公开了称之为队-014的膨胀器方法。膨胀器在最低温度水平下运行,然而,在这种情况下对全部制冷功效的贡献只有大约25 %,典型地少于20 %。因此,如果使用多于两个膨胀器,大部分冷却工作取决于一个或多个温膨胀器。本专利技术的目的是提供一种冷却富烃馏分,特别是天然气的方法,其中,当使用两个膨胀器时,可更均匀地分配制冷功效,在这种情况下,比例优选为40/60至60/40,从而在膨胀器的给定最大尺寸下,增加液化方法的容量而无需使用并列的膨胀器。此外,拒绝使用如上述美国专利6412302所述的单独的制冷回路以保持低资金成本。为了达到该目的,本专利技术提出一种与制冷剂回路的方向相反冷却富烃馏分,特别是天然气的方法,其中a)与制冷剂回路的制冷剂的方向相反在三个热交换区中将富烃馏分冷却,b)将制冷剂压缩并且接着分流出第一支流,同时剩余的制冷剂流与其自身方向相反在第一热交换区中被冷却到高于制冷剂的临界温度至少3°C,优选为至少5°C的温度,c)第一支流做功膨胀,d)将被冷却的剩余的制冷剂流分成第二支流和第三支流,e)第二支流做功膨胀,其中选择压力和温度,使得在做功膨胀期间没有液体产生,f)第三支流与做功膨胀的第二支流的方向相反并与其自身方向相反在第二和第三热交换区中被冷却至如下程度,使得在随后的膨胀中,形成至少90mol%,优选为至少95mol %的液体馏分,g)第三膨胀的两相支流在第三热交换区中至少部分被汽化,优选地完全被汽化,h)将做功膨胀的第二支流添加到第三支流,并且因此形成的制冷剂流在第二热交换区中被进一步加热,i)将做功膨胀的第一支流添加到被加热的制冷剂流,并且制冷剂流在其重新压缩之前在第一热交换区中被进一步加热。根据本专利技术的现在同样具有温膨胀器和冷膨胀器,其中制冷剂支流做功膨胀。然而,相比于现有技术的方法,冷膨胀器不再用于产生最大制冷。结果是,冷膨胀器的运行点以这样的方式变化,即现在两个膨胀器的制冷功效在40/60至60/40之间的所需比例中。在膨胀器的给定最大尺寸下,相比于现有技术的方法,这样可以增大设备容量而无需使用并列的膨胀器。根据本专利技术的方法的更有利的实施方案,除氮气和甲烷以外,包含至少一种选自C0、Ar、02、Kr、Xe、C2H4和C 2H6的其他组分的混合物用作制冷剂,其中氮气以至少50mol %,优选至少60mol%的浓度存在,并且甲烷以至少10mol%,优选至少20mol%的浓度存在。积极有利的是保持用于压缩制冷剂的制冷机的吸气压力尽可能高。如果需要避免做功膨胀的第二制冷剂支流中存在液体,并同时在膨胀的第三制冷剂支流中保留尽可能多的液体,得出限定的边界条件,该条件通过提出的制冷剂组成得到最佳满足。在根据本专利技术的的进一步发展中,建议将制冷剂压缩到高于临界压力至少5bar,优选地至少lObar。借助于该方法程序,避免了高压范围下制冷剂的两相性,并且改进了部分负载容量。在下文中将参照图1示出的示例实施方案更详细地描述根据本专利技术的及其进一步优选实施方案。在多个热交换器或热交换区El、E2、E3中将待冷却的富烃气体馏分A冷却,并且在方法中任选地液化和过冷却,或者在高于临界压力的压力下转换而无需相变成高密度流体。在这种情况下,将待液化的馏分冷却(流体B)至如下程度,即在阀V2中膨胀至最大5bar,优选最大1.5bar的压力后,主要形成液体,其中,液体馈分至少为85mol%,优选至少90mol% ο除了单级或多级压缩机C1,用于冷却富烃馏分Α的制冷回路具有两个膨胀器XI和X2以及膨胀阀VI。在该制冷回路中循环的制冷剂1在图1示出的示例实施方案中以多级方式中被压缩C1,其中,提供相应的中间冷却器和后冷却器E4和E5。被压缩到所需的循环压力的制冷剂3被分成第一支流4和剩余的制冷剂流6。第一支流4在所谓的温膨胀器XI中做功膨胀,并且通过管线5被供给到以下描述的制冷剂流12。在这种情况下,第一支流4优选地膨胀至稍微高于压缩机C1的吸气压力的压力。温膨胀器XI的出口和压缩机C1的吸气口之间的典型地小于lbar的压差由设备和管线中的压降引起。制冷剂流6在第一热交换区E1中被冷却到高于制冷剂的临界温度至少3°C,优选至少5°C的温度。然后将以这种方式冷却的制冷剂流7分成第二支流8和第三支流10。第二支流在所谓的冷膨胀器X2中做功膨胀,其中,选择压力和温度,使得在做功膨胀期间没有液体产生。此外,随后接着膨胀至稍微高于压缩机C1的吸气压力的压力。第三支流10与做功膨胀的第二支流9的方向相反并与其自身方向相反在第二和第三热交换区E2和E3中被冷却至如下程度,即在膨胀阀VI中的被冷却的第三支流11的随后膨胀中,形成至少为90mol %,优选为至少95mol %的液体馏分。接着,膨胀的两相支流11至少部分地,优选全部地,在第三热交换区E3中被汽化。在热交换区E3的热端,向其加入膨胀的第二支流9,并且因此形成的制冷剂流在第二热交换区E3中进一步被加热。最终,在全部制冷剂流在其重新压缩C1的上游在热交换区E1中被加热至环境温度之前,将做功膨胀的第一支流5添加到制冷剂流12中。—个或两个膨胀器XI和X2的机械功效可以任选地被用于驱动发生器或驱动减轻回路压缩机C1负荷的增压压缩机。增压压缩机可以串联或并联设置,或者可被用于压缩机C1的上游或下游。合适的热交换器El、E2和E3都是允许逆流换热的类型的热交换器。如图1中示出的,热交换器(区)E2和E3可在特殊的实施方案中构成,其中热交换束E2和E3被建造到共用的压力容器D中,其中膨胀的制冷剂支流9和11在壳侧被加热。如果待冷却的气体馏分包含成品中不想要的(重)组分,可以从被冷却的富烃馏分B移除所述组分,例如通过在热交换器(区)E1和E2之间的沉积或洗涤。【主权项】1.与制冷剂回路的方向相反冷却富烃馏分,特别是天然气的方法,其中 a)与制冷剂回路的制冷剂的方向相反在三个热交换区(E1,E2,E3)中将富烃馏分(A)冷却, b)将制冷剂压缩(C1)并且接着分流出第一支流(4),同时剩余的制冷剂流(6)与其自身方向相反在第一热交换区(E1)中被冷却到高于制冷剂的临界温度至少:TC,优选为至少5°C的温度, c)第一支流(4)做功膨胀(XI), d)将被冷却的剩余的制冷剂流(7)分成第二支流⑶和第三支流(10), e)第二支流(8)做功膨胀(X2),其中选择压力和温度,使得在做功膨胀(X2)期间没有液体产生, f)第三支流(10)与做功膨胀的第二支流(9)方向相反并与其自身方向相反在第二和第三热本文档来自技高网...

【技术保护点】
与制冷剂回路的方向相反冷却富烃馏分,特别是天然气的方法,其中a)与制冷剂回路的制冷剂的方向相反在三个热交换区(E1,E2,E3)中将富烃馏分(A)冷却,b)将制冷剂压缩(C1)并且接着分流出第一支流(4),同时剩余的制冷剂流(6)与其自身方向相反在第一热交换区(E1)中被冷却到高于制冷剂的临界温度至少3℃,优选为至少5℃的温度,c)第一支流(4)做功膨胀(X1),d)将被冷却的剩余的制冷剂流(7)分成第二支流(8)和第三支流(10),e)第二支流(8)做功膨胀(X2),其中选择压力和温度,使得在做功膨胀(X2)期间没有液体产生,f)第三支流(10)与做功膨胀的第二支流(9)方向相反并与其自身方向相反在第二和第三热交换区(E2,E3)中被冷却至如下程度,使得在随后的膨胀(V1)中,形成至少90mol%,优选为至少95mol%的液体馏分,g)第三膨胀的两相支流(11)在第三热交换区(E3)中至少部分被汽化,优选地完全被汽化,h)将做功膨胀的第二支流(9)添加到第三支流,并且因此形成的制冷剂流在第二热交换区(E2)中被进一步加热,i)将做功膨胀的第一支流(5)添加到被加热的制冷剂流(12),并且制冷剂流在其重新压缩(C1)之前在第一热交换区(E1)中被进一步加热。...

【技术特征摘要】
...

【专利技术属性】
技术研发人员:H·鲍尔C·戈尔维策
申请(专利权)人:林德股份公司
类型:发明
国别省市:德国;DE

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1