微波高温专用保温耐火材料及其制备方法技术

技术编号:12788320 阅读:114 留言:0更新日期:2016-01-28 17:01
本发明专利技术公开了一种微波高温专用保温耐火材料及其制备方法,所述保温耐火材料由高纯铝和莫来石纤维在微波工业窑炉中制备而成,高纯铝的质量百分比为55~80%,莫来石纤维的质量百分比为20~45%,按一定配比配料后使原料混合均匀,再添加一定量的粘结剂和造孔剂搅拌均匀后,然后经过成型、干燥、烧结、切割加工等一系列工艺过程,制备成一种微波高温专用保温耐火材料。保温耐火材料主要化学成分为Al2O3和SiO2。本发明专利技术提供的微波高温专用保温耐火材料透波性能好、高效节能、寿命长,可为目前微波工业炉设备提供高效节能的保证;相关性能达标:体积密度≥1.3g/cm3,常温耐压强度≥5.8MPa,导热系数≤0.6w/n•k,相对介电常数≤7,介电损耗≤0.07。

【技术实现步骤摘要】

本专利技术涉及耐火材料领域,尤其涉及一种。
技术介绍
工业窑炉是工业生产中的主要耗能设备,每年能耗数量巨大,尤其在冶金、建材、陶瓷、玻璃、化工及机电企业中的热加工过程中,工业窑炉的能耗可占总能耗的40-70%,而微波工业窑炉较之传统工业窑炉具有升温速度快,物料受热均匀,热能利用率高等优点。随着时代的发展,微波工业窑炉取代传统工业炉将成为必然结果。目前大多数的耐火材料还都是应用于传统工业窑炉的耐火材料,在微波工业窑炉中透波性能差,并不能够很好地应用,本专利技术正是针对这个问题做出了一种适用于微波工业窑炉的微波高温专用保温耐火材料,将其推广应用必然会对我国高温窑炉行业节能减排产生巨大的作用,具有重要的意义。
技术实现思路
本专利技术的目的是针对上述存在的问题,提出了一种,使得保温耐火材料用于微波高温工业窑炉能够达到透波性能好、高效节能、寿命长的目的,从而为微波高温工业的节能减排做出贡献。为解决上述技术问题,本专利技术采用以下技术方案: 一种微波高温专用保温耐火材料,由高纯铝和莫来石纤维在微波工业窑炉中制备而成,高纯铝的质量百分比为55~80%,莫来石纤维的质量百分比为20~45% ;所述高纯铝的A1203纯度彡99.9%,颗粒尺寸大小为1.00mm ;莫来石纤维中A1 203的质量百分比为72~80%,Si02的质量百分比为20~28% ;所述保温耐火材料主要化学成分及各成分质量百分比为:A1203含量80~93%,Si02含量7~20%,Fe 203含量彡1%,三者之和为100%。高纯铝的质量百分比为64.6%,莫来石纤维的质量百分比为35.4%。高纯铝的质量百分比为71.3%,莫来石纤维的质量百分比为28.7%。一种上述微波高温专用保温耐火材料的制备方法,所述保温耐火材料由高纯铝和莫来石纤维制备而成,高纯铝的质量百分比为55~80%,莫来石纤维的质量百分比为20-45% ;所述制备方法包括以下步骤: (1)将高纯铝和莫来石纤维按上述配比配料以水为研磨介质进行球磨混料,球磨时间为30min,转速为300r/min,得到泥楽;(2)将上述泥浆烘干并按照其重量的4%添加PVA塑化剂,然后造粒,形成粒状粉体; (3)将粒状粉体在20MPa~40MPa压力下成型以形成坯体; (4)将成型好的坯体在炉中烧结,烧结制度为:室温到800°C阶段的升温速率为5~8°C/min,800°C到最终烧成温度的升温速率为2~5°C /min,最终烧成温度为1400~1550°C,在最终烧成温度下保温时间为0.5~4h,然后随炉冷至室温,即得到微波高温专用保温耐火材料。本专利技术提供的微波高温专用保温耐火材料透波性能好、高效节能、寿命长,相关性能达标:体积密度彡1.3g/cm3,常温耐压强度彡5.8MPa,导热系数< 0.6w/n*k,相对介电常数< 7,介电损耗< 0.07。【具体实施方式】下面结合实施例对本专利技术做详细说明:各实施例在以本专利技术技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本专利技术的保护范围不限于下述的实施例。本专利技术保温耐火材料的原料包括高纯铝和莫莱石纤维,其中高纯铝的质量百分比为55~80%,颗粒尺寸大小为1.00mm,其A1203纯度彡99.9%,;莫来石纤维的质量百分比为20~45%,其中莫来石纤维各组分及各组分质量百分比为:A1203含量为72~80%,S1 2含量为20~28%。该保温耐火材料主要化学成分及各成分质量百分比为:A1203含量80~93%,3102含量7~20%,Fe203含量彡1%,三者之和为100%。实施例1 各原料及其配比(质量百分比):高纯铝55%,莫莱石纤维45%。首先将各种原料按照上述配比并以水为研磨介质球磨混料,球磨时间为30min,转速为300r/min,得到泥浆;然后将上述泥浆烘干并按照其重量的4%添加PVA塑化剂,然后造粒,形成粒状粉体;随后将粒状粉体在20MPa压力下成型以形成坯体;将成型好的坯体在炉中烧结,烧结制度为:室温到800°C阶段的升温速率为8°C /min,800°C到最终烧成温度的升温速率为2°C /min,最终烧成温度为1400°C,在最终烧成温度下保温时间0.5h,然后随炉冷至室温,即得到微波高温专用保温耐火材料。所得制品的主要性能指标如下:适宜使用温度为1500°C,体积密度为1.35g/cm3,常温耐压强度为6.3MPa,导热系数为0.43w/n.k,相对介电常数彡7,介电损耗彡0.07。实施例2 各原料及其配比(质量百分比):高纯铝64.6%,莫莱石纤维35.4%。首先将各种原料按照上述配比并以水为研磨介质球磨混料,球磨时间为30min,转速为300r/min,得到泥浆;然后将上述泥浆烘干并按照其重量的4%添加PVA塑化剂,然后造粒,形成粒状粉体;随后将粒状粉体在30MPa压力下成型以形成坯体;将成型好的坯体在炉中烧结,烧结制度为:室温到800°C阶段的升温速率为7°C /min,800°C到最终烧成温度的升温速率为3°C /min,最终烧成温度为1430°C,在最终烧成温度下保温时间2h,然后随炉冷至室温,即得到微波高温专用保温耐火材料。所得制品的主要性能指标如下:适宜使用温度为1550°C,体积密度为1.41g/cm3,常温耐压强度为7.8MPa,导热系数为0.49w/n.k,相对介电常数彡7,介电损耗彡0.07。实施例3 各原料及其配比(质量百分比):高纯铝71.3%,莫莱石纤维28.7%。首先将各种原料按照上述配比并以水为研磨介质球磨混料,球磨时间为30min,转速为300r/min,得到泥浆;然后将上述泥浆烘干并按照其重量的4%添加PVA塑化剂,然后造粒,形成粒状粉体;随后将粒状粉体在40MPa压力下成型以形成坯体;将成型好的坯体在炉中烧结,烧结制度为:室温到800°C阶段的升温速率为5°C /min,800°C到最终烧成温度的升温速率为5°C /min,最终烧成温度为1550°C,在最终烧成温度下保温时间4h,然后随炉冷至室温,即得到微波高温专用保温耐火材料。所得制品的主要性能指标如下:适宜使用温度为1600°C,体积密度为1.47g/cm3,常温耐压强度为8.4MPa,导热系数为0.55w/n-k,相对介电常数< 6.5,介电损耗< 0.07。实施例4 各原料及其配比(质量百分比):高纯铝75%,莫莱石纤维25%。首先将各种原料按照上述配比并以水为研磨介质球磨混料,球磨时间为30min,转速为300r/min,得到泥浆;然后将上述泥浆烘干并添加4%的PVA塑化剂,然后造粒,形成粒状粉体;随后将粒状粉体在45MPa压力下成型以形成坯体;将成型好的坯体在炉中烧结,烧结制度为:室温到800°C阶段的升温速率为6°C /min,800°C到最终烧成温度的升温速率为4°C /min,最终烧成温度为1550°C,在最终烧成温度下保温时间4h,然后随炉冷至室温,即得到微波高温专用保温耐火材料。所得制品的主要性能指标如下:适宜使用温度为1650°C,体积密度为1.51g/cm3,常温耐压强度为8.9MPa,导热系数为0.59w/n.k,相对介电常数彡8,介电损耗彡0.09。实施例本文档来自技高网...

【技术保护点】
一种微波高温专用保温耐火材料,其特征在于:由高纯铝和莫来石纤维在微波工业窑炉中制备而成,高纯铝的质量百分比为55~80%,莫来石纤维的质量百分比为20~45%;所述高纯铝的Al2O3纯度≥99.9%,颗粒尺寸大小为1.00mm;莫来石纤维中Al2O3的质量百分比为72~80%,SiO2 的质量百分比为20~28%;所述保温耐火材料主要化学成分及各成分质量百分比为:Al2O3含量80~93%,SiO2含量7~20%,Fe2O3含量≤1%,三者之和为100%。

【技术特征摘要】

【专利技术属性】
技术研发人员:王涛
申请(专利权)人:河南东普热能科技有限公司
类型:发明
国别省市:河南;41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1