一种多加热区温度解耦主从控制方法技术

技术编号:12200607 阅读:109 留言:0更新日期:2015-10-14 13:03
本发明专利技术是涉及一种多加热区温度解耦主从控制方法,该方法是测量m个温度点的均匀性曲线;根据m个温度点的均匀性曲线设置n个2×m维解耦数组构成n个解耦向量;根据n个解耦向量的m个耦合点确定n条温度耦合曲线;根据n条耦合曲线计算相应温度点处的去耦补偿量(PVB)然后与设定值SV进行相加后得到新的各区设定温度(SV1);将新的设定温度(SV1)和各区反馈温度PV送到PID运算控制器中经计算,然后调节输出到执行单元进行温度调节,该方法成本低、简洁,参数调整非常方便,控制温度的均匀性和稳定性高,可广泛应用于真空炉、空气循环电炉等。

【技术实现步骤摘要】
一种多加热区温度解耦主从控制方法
本专利技术属于自动控制技术中的温度解耦控制领域,具体涉及一种多加热区温度解耦主从控制方法。
技术介绍
目前随着科技的进步,热处理设备越来越多,特别是大型热处理设备,如真空炉、气氛炉、空气循环电炉等。但大多数该类设备通常采多温区控制,每个控温区至少配置一只控温仪表,每个仪表通过设定相同的设定值,予以单独控制各区域温度。如图1所示:B0—第0号分区的控温仪表,B1—第1号分区的控温仪表,B2—第2号分区的控温仪表,Bn—第n号温区的控温仪表。Z0—第0加热区的加热器,Z1—第1加热区的加热器,Z2—第2加热区的加热器,Zn—第n加热区的加热器,S0—第0加热区的实际温度传感器,S1—第1加热区的实际温度传感器,S2—第2加热区的实际温度传感器,Sn—第n加热区的实际温度传感器,SV—为所有控温仪表的设定温度,PV0—0号仪表温度反馈温度,PV1—1号仪表反馈温度,PV2—2号仪表反馈温度,PVn—n号仪表反馈温度,TG0—0号功率调节器,TG1—1号功率调节器,TG2—2号功率调节器,TGn—n号功率调节器。其中:一般n≥2。该系统各环为单一PID调节控制环,不具备解耦控制功能,其控制框图如图2所示。图2中,SV—设定温度,PV—反馈温度,ΔE—SV与PV间的误差,比例增益(P)--Kp,积分时间(I)--Ti,微分时间(D)--Td,MV—PID控制器运算输出。如专利号为:CN201110043242.5,专利名称为:基于热平衡的陶瓷辊道窑炉温度解耦控制方法,摘要为:本专利技术提供的基于热平衡的陶瓷辊道窑炉温度解耦控制方法,是利用一种由多个PID控制器和1个解耦补偿器及窑炉炉体组成的控制系统对陶瓷辊道窑炉温度进行解耦控制,具体是:第一步,在窑炉开始升温阶段,先根据产品烧成曲线确定窑炉内每个烧嘴对应温区的目标控制温度,然后整定PID控制器的参数;第二步,当实际检测到的温度升至目标控制温度附近时,计算各烧嘴之间温度耦合系数,得到温度解耦补偿器输出解耦量,通过解耦量对各自回路的PID控制器输出量进行补偿;第三步,得到补偿之后的控制量通过执行器实时调整对应烧嘴的燃气量。该控温方法存在如下缺点:1、各控温仪表独立控制,在加热过程中会相互热耦合,对相邻加热区域会产生扰动。2、硬件仪表多,成本高。3、系统总的抗扰动能力较差。4.该控制方法还导致仪表太多,操作繁琐。
技术实现思路
本专利技术的目的主要是针对传统多加热区多仪表独立控制方法,给系统带来的温度均匀性差,抗扰动能力弱,成本高,操作不方便缺点,提供了去掉硬件仪表,采用软件代替仪表,并植入数字解耦控制器,温度均匀性好,抗扰动能力强,低成本,柔性好,操作方便的控制方法。本专利技术实现上述目的技术解决方案可以通过以下方案来达到。一种多加热区温度解耦主从控制方法,包括如下步骤:第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点(即SVS0、SVS1、…、SVSm-1)的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下n个加热区的稳态时的实际温度(即PV0S0、PV0S1、…、PV0Sm-1;PV1S0、PV1S1、…、PV1Sm-1;…;PVn-1S0、PVn-1S1、…、PVn-1Sm-1;);第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置n个2×m维解耦数组(VC),其中每一个解耦数组第一列m个元素分别为m个测温点温度(即SVS0、SVS1、…、SVSm-1),第二列分别对应为相应温区的m个测温点时该温区稳态时的实际温度(即PVS0、PVS1、…、PVSm-1)。有n个温区,就设定n个解耦数组,但是如果将某一温区作为主控温区,那么相应的解耦数组的第二列元素与第一列数组设置相同,其余n-1个温区为从控制区。第三步,根据n个2×m维解耦数组(VC),以耦合点温度(即解耦数组VC的第一列元素)为横坐标,各区在耦合点的实际温度(即解耦数组VC的第二列元素)为纵坐标,由n×m个点构成的n条耦合曲线,对于主控区则为一条45°直线,其余各区由m个点拟合成该区的耦合曲线;第四步,将主控区的耦合曲线减去其余各温区耦合曲线得到的偏差(PVB),再与设定值(SV)相加得到新的设定值(SV1),再将此新的设定值(SV1)和温区实际温度(PV)送到的PID调节器中参与控制计算,然后输出到功率调节器调节加热器功率,从而达到温度均匀性调节的目的;第五步,按照图5所示控制框图编写控制软件,调整PID控制器的P、I、D参数和适度修正解耦向量(VC)可以实现该控制方法,构成带解耦运算的控制系统如图6所示,可实现多加热区系统的温度解耦控制,其均匀性指标和稳态误差都有非常大的提高。本专利技术相比于现有技术具有如下有益效果:根据本专利技术提供的上述方案,本专利技术的技术方案和上述对比文件的技术方案最大的不同在于:是本专利技术采用的技术方案是先解耦然后进行PID调节输出,而对比文件是先PID调节后解耦,因此本专利技术所提供的方案涉及的多加热区温度控制系统控制性能好,成本低,系统柔性好,操作方便的特点,同时有益效果主要体现在:1.控制性能大幅提高。该控制器植入了关键的软件解耦器,可大大提高各加热区的温度均匀性和调节性能;2.节约硬件成本。本数字化多加热区主从温度控制器,取消了仪表硬件,特别是加热区越多硬件仪表的成本节省就越明显;3.系统配置灵活。该控制器可根据加热区的个数n,相应建立n个解耦器、PID调节器的调用,很方便的实现n个加热区的温度控制环进行解耦控制。当然,加热区的个数n因系统布局不同可灵活配置和改变;4.便于集中监控。该控制器由于采用软件实现,参数给定与调节可通过软件设置,简化了操作人员对多仪表操作的强度,而且很方便与计算机接口进行可视化(或组态型)操作。5.响应速度块、控制精度高。该控制器应用现代计算机控制技术,可采用13位或更多位数的模数转换模块(AD模块)和数模转换模块(DA模块)提高数据采集和输出精度,同时通过32位或64为双精度数学运算指令来提高系统数据计算精度,从而保证控制器的控制精度。附图说明图1不带解耦运算多温区控制结构图;图2不带解耦控制的PID控制器控制框图;图3多加热区某测温点温度均匀性曲线图;图4耦合曲线;图5带解耦运算的PID控制框图;图6带解耦器的多加热区控制框图。具体实施方式实施例1:一种多加热区温度解耦主从控制方法,其特征在于包括如下步骤:第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点(即SVS0、SVS1、…、SVSm-1)的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下n个加热区的稳态时的实际温度(即PV0S0、PV0S1、…、PV0Sm-1;PV1S0、PV1S1、…、PV1Sm-1;…;PVn-1S0、PVn-1S1、…、PVn-1Sm-1;);第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置n个2×m维解耦数组(VC),其中每一个解耦数组第一列m个元素分别为m个测温点温度(即SVS0、SVS1、…、SVSm-1),第二列分别对应为相应本文档来自技高网
...
一种多加热区温度解耦主从控制方法

【技术保护点】
一种多加热区温度解耦主从控制方法,其特征在于包括如下步骤:第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点(即SVS0、SVS1、…、SVSm‑1)的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下n个加热区的稳态时的实际温度(即PV0S0、PV0S1、…、PV0Sm‑1;PV1S0、PV1S1、…、PV1Sm‑1;…;PVn‑1S0、PVn‑1S1、…、PVn‑1Sm‑1;);第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置 n个2×m维解耦数组(VC),其中每一个解耦数组第一列m个元素分别为m个测温点温度(即SVS0、SVS1、…、SVSm‑1),第二列分别对应为相应温区的m个测温点时该温区稳态时的实际温度(即PVS0、PVS1、…、PVSm‑1);有n个温区,就设定n个解耦数组,但是如果将某一温区作为主控温区,那么相应的解耦数组的第二列元素与第一列数组设置相同,其余n‑1个温区为从控制区;第三步,根据n个2×m维解耦数组(VC),以耦合点温度(即解耦数组VC的第一列元素)为横坐标,各区在耦合点的实际温度(即解耦数组VC的第二列元素)为纵坐标,由n×m个点构成的n条耦合曲线,对于主控区则为一条45°直线,其余各区由m个点拟合成该区的耦合曲线;第四步,将主控区的耦合曲线减去其余各温区耦合曲线得到的偏差(PVB),再与设定值(SV)相加得到新的设定值(SV1),再将此新的设定值(SV1)和温区实际温度(PV)送到的PID调节器中参与控制计算,然后输出到功率调节器调节加热器功率。...

【技术特征摘要】
1.一种多加热区温度解耦主从控制方法,其特征在于包括如下步骤:第一步,通过常规的多环控温方法,从最低加工零件炉温温度点和最高温度点间均匀选取的m个温度点,测量m个不同温度点,即SVS0、SVS1、…、SVSm-1的温度均匀性,并作出各测温点的均匀性曲线,记录下相应测温点下n个加热区的稳态时的实际温度,即PV0S0、PV0S1、…、PV0Sm-1;PV1S0、PV1S1、…、PV1Sm-1;…;PVn-1S0、PVn-1S1、…、PVn-1Sm-1;第二步,将m个不同测温点确定为各温区的典型温度耦合点,以耦合点温度均匀性为依据,设置n个2×m维解耦数组VC,其中每一个解耦数组第一列m个元素分别为m个温度点,即SVS0、SVS1、…、SVSm-1,第二列分别对应为相应温区的m个测温点时该温区稳态时的实际温度,即PVS0、PVS1、…、PVSm-1;有n个温区,就设定n个解耦数组,但是如果将某一温区作为主控温区,那么相应的解耦数组的第二列元素与第一列数组设置相同,其余n-1个温区为从控制区;第三步,根据n个2×m维解耦数组VC,以耦合点温度,即解耦数组VC的第一列元素为横坐标,各区在耦合点的实际温度,即解耦数组VC的第二列元素为纵坐标,由n×m个点构成的n条耦合曲线,对于主控区则为一条45°直线,其余各区由m个点拟合成该区的耦合曲线;第四步,将主控区的耦合曲线减去其余各温区耦合曲线得到的偏差PVB,再与设定值SV相加得到新的设定值SV1,再将此新的设定值SV1和温区实际温度PV送到的PID调节器中参与控制计算,然后输出到功率调节器调节加热器功率。2.根据权利要求1所述的一种多加热区温度解耦主从控制方法,其特征在于:还包括一种三加热区温度解耦多环控制方法,其步骤包括如下:第一步,对三加热区控制系统,从...

【专利技术属性】
技术研发人员:高猛
申请(专利权)人:成都飞机工业集团有限责任公司
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1